Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 163-199.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that a classical Lipschitz extension theorem of Johnson, Lindenstrauss and Benyamini is asymptotically sharp.
Mots-clés : Markov cotype, Lipschitz extension, CAT (0) metric spaces, nonlinear spectral gaps
@article{AGMS_2013_1_1_a8,
     author = {Mendel, Manor and Naor, Assaf},
     title = {Spectral {Calculus} and {Lipschitz} {Extension} for {Barycentric} {Metric} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {163--199},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1297.54037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a8/}
}
TY  - JOUR
AU  - Mendel, Manor
AU  - Naor, Assaf
TI  - Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 163
EP  - 199
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a8/
LA  - en
ID  - AGMS_2013_1_1_a8
ER  - 
%0 Journal Article
%A Mendel, Manor
%A Naor, Assaf
%T Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 163-199
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a8/
%G en
%F AGMS_2013_1_1_a8
Mendel, Manor; Naor, Assaf. Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 163-199. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a8/