Fractional Maximal Functions in Metric Measure Spaces
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 147-162
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
Mots-clés :
Fractional maximal function, fractional Sobolev space, Campanato space, metric measure space
@article{AGMS_2013_1_1_a7,
author = {Heikkinen, Toni and Lehrb\"ack, Juha and Nuutinen, Juho and Tuominen, Heli},
title = {Fractional {Maximal} {Functions} in {Metric} {Measure} {Spaces}},
journal = {Analysis and Geometry in Metric Spaces},
pages = {147--162},
year = {2013},
volume = {1},
number = {1},
zbl = {1275.42032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a7/}
}
TY - JOUR AU - Heikkinen, Toni AU - Lehrbäck, Juha AU - Nuutinen, Juho AU - Tuominen, Heli TI - Fractional Maximal Functions in Metric Measure Spaces JO - Analysis and Geometry in Metric Spaces PY - 2013 SP - 147 EP - 162 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a7/ LA - en ID - AGMS_2013_1_1_a7 ER -
Heikkinen, Toni; Lehrbäck, Juha; Nuutinen, Juho; Tuominen, Heli. Fractional Maximal Functions in Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 147-162. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a7/