Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 69-129.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(Rn) and the classical Musielak-Orlicz-Hardy space Hv(Rn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(Rn) associated with the second order elliptic operator in divergence form on Rn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(Rn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(Rn) to the Musielak-Orlicz space Lφ(Rn) when i(φ) ∊ (0; 1], from Hφ,L(Rn) to Hφ(Rn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(Rn) to the weak Musielak-Orlicz-Hardy space WHφ(Rn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ
Mots-clés : Musielak-Orlicz-Hardy space, molecule, atom, maximal function, Lusin area function, Schrödinger operator, elliptic operator, Riesz transform
@article{AGMS_2013_1_1_a5,
     author = {Bui, The Anh and Cao, Jun and Ky, Luong Dang and Yang, Dachun and Yang, Sibei},
     title = {Musielak-Orlicz-Hardy {Spaces} {Associated} with {Operators} {Satisfying} {Reinforced} {Off-Diagonal} {Estimates}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {69--129},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1261.42034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a5/}
}
TY  - JOUR
AU  - Bui, The Anh
AU  - Cao, Jun
AU  - Ky, Luong Dang
AU  - Yang, Dachun
AU  - Yang, Sibei
TI  - Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 69
EP  - 129
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a5/
LA  - en
ID  - AGMS_2013_1_1_a5
ER  - 
%0 Journal Article
%A Bui, The Anh
%A Cao, Jun
%A Ky, Luong Dang
%A Yang, Dachun
%A Yang, Sibei
%T Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 69-129
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a5/
%G en
%F AGMS_2013_1_1_a5
Bui, The Anh; Cao, Jun; Ky, Luong Dang; Yang, Dachun; Yang, Sibei. Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 69-129. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a5/