A Formula for Popp’s Volume in Sub-Riemannian Geometry
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 42-57.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

For an equiregular sub-Riemannian manifold M, Popp’s volume is a smooth volume which is canonically associated with the sub-Riemannian structure, and it is a natural generalization of the Riemannian one. In this paper we prove a general formula for Popp’s volume, written in terms of a frame adapted to the sub-Riemannian distribution. As a first application of this result, we prove an explicit formula for the canonical sub- Laplacian, namely the one associated with Popp’s volume. Finally, we discuss sub-Riemannian isometries, and we prove that they preserve Popp’s volume. We also show that, under some hypotheses on the action of the isometry group of M, Popp’s volume is essentially the unique volume with such a property.
Mots-clés : Sub-Riemannian geometry, Popp’s volume, Sub-Laplacian, Sub-Riemannian isometries
@article{AGMS_2013_1_1_a3,
     author = {Barilari, Davide and Rizzi, Luca},
     title = {A {Formula} for {Popp{\textquoteright}s} {Volume} in {Sub-Riemannian} {Geometry}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {42--57},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1260.53062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a3/}
}
TY  - JOUR
AU  - Barilari, Davide
AU  - Rizzi, Luca
TI  - A Formula for Popp’s Volume in Sub-Riemannian Geometry
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 42
EP  - 57
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a3/
LA  - en
ID  - AGMS_2013_1_1_a3
ER  - 
%0 Journal Article
%A Barilari, Davide
%A Rizzi, Luca
%T A Formula for Popp’s Volume in Sub-Riemannian Geometry
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 42-57
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a3/
%G en
%F AGMS_2013_1_1_a3
Barilari, Davide; Rizzi, Luca. A Formula for Popp’s Volume in Sub-Riemannian Geometry. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 42-57. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a3/