A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 36-41
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ R RN.
@article{AGMS_2013_1_1_a2,
author = {David, Guy and Snipes, Marie},
title = {A {Non-Probabilistic} {Proof} of the {Assouad} {Embedding} {Theorem} with {Bounds} on the {Dimension}},
journal = {Analysis and Geometry in Metric Spaces},
pages = {36--41},
year = {2013},
volume = {1},
number = {1},
zbl = {1261.53039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/}
}
TY - JOUR AU - David, Guy AU - Snipes, Marie TI - A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension JO - Analysis and Geometry in Metric Spaces PY - 2013 SP - 36 EP - 41 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/ LA - en ID - AGMS_2013_1_1_a2 ER -
David, Guy; Snipes, Marie. A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 36-41. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/