A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 36-41.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ R RN.
Mots-clés : Assouad Embedding, doubling metric spaces, snowflake distance
@article{AGMS_2013_1_1_a2,
     author = {David, Guy and Snipes, Marie},
     title = {A {Non-Probabilistic} {Proof} of the {Assouad} {Embedding} {Theorem} with {Bounds} on the {Dimension}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1261.53039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/}
}
TY  - JOUR
AU  - David, Guy
AU  - Snipes, Marie
TI  - A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 36
EP  - 41
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/
LA  - en
ID  - AGMS_2013_1_1_a2
ER  - 
%0 Journal Article
%A David, Guy
%A Snipes, Marie
%T A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 36-41
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/
%G en
%F AGMS_2013_1_1_a2
David, Guy; Snipes, Marie. A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 36-41. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a2/