The Lusin Theorem and Horizontal Graphs in the Heisenberg Group
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 295-301.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

In this paper we prove that every collection of measurable functions fα , |α| = m, coincides a.e. withmth order derivatives of a function g ∈ Cm−1 whose derivatives of order m − 1 may have any modulus of continuity weaker than that of a Lipschitz function. This is a stronger version of earlier results of Lusin, Moonens-Pfeffer and Francos. As an application we construct surfaces in the Heisenberg group with tangent spaces being horizontal a.e.
Mots-clés : Lusin theorem, Heisenberg group, characteristic points
@article{AGMS_2013_1_1_a13,
     author = {Haj{\l}asz, Piotr and Mirra, Jacob},
     title = {The {Lusin} {Theorem} and {Horizontal} {Graphs} in the {Heisenberg} {Group}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {295--301},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1286.46036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a13/}
}
TY  - JOUR
AU  - Hajłasz, Piotr
AU  - Mirra, Jacob
TI  - The Lusin Theorem and Horizontal Graphs in the Heisenberg Group
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 295
EP  - 301
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a13/
LA  - en
ID  - AGMS_2013_1_1_a13
ER  - 
%0 Journal Article
%A Hajłasz, Piotr
%A Mirra, Jacob
%T The Lusin Theorem and Horizontal Graphs in the Heisenberg Group
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 295-301
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a13/
%G en
%F AGMS_2013_1_1_a13
Hajłasz, Piotr; Mirra, Jacob. The Lusin Theorem and Horizontal Graphs in the Heisenberg Group. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 295-301. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a13/