Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 232-254.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Mots-clés : Sobolev mapping, Ahlfors regularity, Poincaré inequality, foliation, David–Semmes regular mapping
@article{AGMS_2013_1_1_a10,
     author = {Balogh, Zolt\'an M. and Tyson, Jeremy T. and Wildrick, Kevin},
     title = {Dimension {Distortion} by {Sobolev} {Mappings} in {Foliated} {Metric} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {232--254},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1285.46029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a10/}
}
TY  - JOUR
AU  - Balogh, Zoltán M.
AU  - Tyson, Jeremy T.
AU  - Wildrick, Kevin
TI  - Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 232
EP  - 254
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a10/
LA  - en
ID  - AGMS_2013_1_1_a10
ER  - 
%0 Journal Article
%A Balogh, Zoltán M.
%A Tyson, Jeremy T.
%A Wildrick, Kevin
%T Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 232-254
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a10/
%G en
%F AGMS_2013_1_1_a10
Balogh, Zoltán M.; Tyson, Jeremy T.; Wildrick, Kevin. Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 232-254. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a10/