Self-similar sets with super-exponential close cylinders
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 727-738
Cet article a éte moissonné depuis la source Journal.fi
Baker (2019), Bárány and Käenmäki (2019) independently showed that there exist iterated function systems without exact overlaps and there are super-exponentially close cylinders at all small levels. We adapt the method of Baker and obtain further examples of this type. We prove that for any algebraic number $\beta\ge 2$ there exist real numbers $s, t$ such that the iterated function system
$\left \{\frac{x}{\beta}, \frac{x+1}{\beta}, \frac{x+s}{\beta}, \frac{x+t}{\beta}\right \}$
satisfies the above property.
Keywords:
Self-similar sets, exact overlaps, continued fractions
Affiliations des auteurs :
Changhao Chen 1
@article{AFM_2021_46_2_a9,
author = {Changhao Chen},
title = {Self-similar sets with super-exponential close cylinders},
journal = {Annales Fennici Mathematici},
pages = {727--738},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a9/}
}
Changhao Chen. Self-similar sets with super-exponential close cylinders. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 727-738. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a9/