Multiplication on uniform λ-Cantor sets
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 703-711
Cet article a éte moissonné depuis la source Journal.fi
Let $C$ be the middle-third Cantor set. Define $C*C=\{x*y\colon x,y\in C\}$, where $*=+,-,\cdot,\div$ (when $*=\div$, we assume $y\neq0$). Steinhaus [17] proved in 1917 that
$C-C=[-1,1]$, $C+C=[0,2]$.
In 2019, Athreya, Reznick and Tyson [1] proved that
$C\div C=\bigcup_{n=-\infty}^{\infty}\left[ 3^{-n}\dfrac{2}{3},3^{-n}\dfrac {3}{2}\right] \cup \{0\}$.
In this paper, we give a description of the topological structure and Lebesgue measure of $C\cdot C$. We indeed obtain corresponding results on the uniform $\lambda$-Cantor sets.
Keywords:
Self-similar set, uniform Cantor sets, arithmetic, Lebesgue measure
Affiliations des auteurs :
Jiangwen Gu 1 ; Kan Jiang 1 ; Lifeng Xi 2 ; Bing Zhao 1
@article{AFM_2021_46_2_a7,
author = {Jiangwen Gu and Kan Jiang and Lifeng Xi and Bing Zhao},
title = {Multiplication on uniform {\ensuremath{\lambda}-Cantor} sets},
journal = {Annales Fennici Mathematici},
pages = {703--711},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/}
}
Jiangwen Gu; Kan Jiang; Lifeng Xi; Bing Zhao. Multiplication on uniform λ-Cantor sets. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 703-711. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/