1Ningbo University, Department of Mathematics 2Ningbo University, Department of Mathematics, and Hunan Normal University, School of Mathematics and Statistics
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 703-711
Cet article a éte moissonné depuis la source Journal.fi
Let $C$ be the middle-third Cantor set. Define $C*C=\{x*y\colon x,y\in C\}$, where $*=+,-,\cdot,\div$ (when $*=\div$, we assume $y\neq0$). Steinhaus [17] proved in 1917 that
$C-C=[-1,1]$, $C+C=[0,2]$.
In 2019, Athreya, Reznick and Tyson [1] proved that
$C\div C=\bigcup_{n=-\infty}^{\infty}\left[ 3^{-n}\dfrac{2}{3},3^{-n}\dfrac {3}{2}\right] \cup \{0\}$.
In this paper, we give a description of the topological structure and Lebesgue measure of $C\cdot C$. We indeed obtain corresponding results on the uniform $\lambda$-Cantor sets.
1
Ningbo University, Department of Mathematics
2
Ningbo University, Department of Mathematics, and Hunan Normal University, School of Mathematics and Statistics
@article{AFM_2021_46_2_a7,
author = {Jiangwen Gu and Kan Jiang and Lifeng Xi and Bing Zhao},
title = {Multiplication on uniform {\ensuremath{\lambda}-Cantor} sets},
journal = {Annales Fennici Mathematici},
pages = {703--711},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/}
}
TY - JOUR
AU - Jiangwen Gu
AU - Kan Jiang
AU - Lifeng Xi
AU - Bing Zhao
TI - Multiplication on uniform λ-Cantor sets
JO - Annales Fennici Mathematici
PY - 2021
SP - 703
EP - 711
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/
LA - en
ID - AFM_2021_46_2_a7
ER -
%0 Journal Article
%A Jiangwen Gu
%A Kan Jiang
%A Lifeng Xi
%A Bing Zhao
%T Multiplication on uniform λ-Cantor sets
%J Annales Fennici Mathematici
%D 2021
%P 703-711
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/
%G en
%F AFM_2021_46_2_a7
Jiangwen Gu; Kan Jiang; Lifeng Xi; Bing Zhao. Multiplication on uniform λ-Cantor sets. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 703-711. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a7/