1Villanova University, Department of Mathematics & Statistics 2Brown University, Department of Mathematics 3Eötvös Loránd University, Institute of Mathematics 4Wake Forest University, Department of Mathematics & Statistics 5University of California, Department of Mathematics, Berkeley
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702
Cet article a éte moissonné depuis la source Journal.fi
Let $\ell_1,\ell_2,\dots$ be a countable collection of lines in $\mathbf{R}^d$. For any $t \in [0,1]$ we construct a compact set $\Gamma\subseteq\mathbf{R}^d$ with Hausdorff dimension $d-1+t$ which projects injectively into each $\ell_i$, such that the image of each projection has dimension $t$. This immediately implies the existence of homeomorphisms between certain Cantor-type sets whose graphs have large dimensions. As an application, we construct a collection $E$ of disjoint, non-parallel $k$-planes in $\mathbf{R}^d$, for $d \geq k+2$, whose union is a small subset of $\mathbf{R}^d$, either in Hausdorff dimension or Lebesgue measure, while $E$ itself has large dimension. As a second application, for any countable collection of vertical lines $w_i$ in the plane we construct a collection of nonvertical lines $H$, so that $F$, the union of lines in $H$, has positive Lebesgue measure, but each point of each line $w_i$ is contained in at most one $h\in H$ and, for each $w_i$, the Hausdorff dimension of $F\cap w_i$ is zero.
Keywords:
Hausdorff dimension, Lebesgue measure, injective projections, union of lines, union of disjoint planes
Affiliations des auteurs :
Frank Coen 
1
;
Nate Gillman 
2
;
Tamás Keleti 
3
;
Dylan King 
4
;
Jennifer Zhu 
5
1
Villanova University, Department of Mathematics & Statistics
2
Brown University, Department of Mathematics
3
Eötvös Loránd University, Institute of Mathematics
4
Wake Forest University, Department of Mathematics & Statistics
5
University of California, Department of Mathematics, Berkeley
@article{AFM_2021_46_2_a6,
author = {Frank Coen and Nate Gillman and Tam\'as Keleti and Dylan King and Jennifer Zhu},
title = {Large sets with small injective projections},
journal = {Annales Fennici Mathematici},
pages = {683--702},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/}
}
TY - JOUR
AU - Frank Coen
AU - Nate Gillman
AU - Tamás Keleti
AU - Dylan King
AU - Jennifer Zhu
TI - Large sets with small injective projections
JO - Annales Fennici Mathematici
PY - 2021
SP - 683
EP - 702
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/
LA - en
ID - AFM_2021_46_2_a6
ER -
%0 Journal Article
%A Frank Coen
%A Nate Gillman
%A Tamás Keleti
%A Dylan King
%A Jennifer Zhu
%T Large sets with small injective projections
%J Annales Fennici Mathematici
%D 2021
%P 683-702
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/
%G en
%F AFM_2021_46_2_a6
Frank Coen; Nate Gillman; Tamás Keleti; Dylan King; Jennifer Zhu. Large sets with small injective projections. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/