Large sets with small injective projections
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702.

Voir la notice de l'article provenant de la source Journal.fi

Let $\ell_1,\ell_2,\dots$ be a countable collection of lines in $\mathbf{R}^d$. For any $t \in [0,1]$ we construct a compact set $\Gamma\subseteq\mathbf{R}^d$ with Hausdorff dimension $d-1+t$ which projects injectively into each $\ell_i$, such that the image of each projection has dimension $t$. This immediately implies the existence of homeomorphisms between certain Cantor-type sets whose graphs have large dimensions. As an application, we construct a collection $E$ of disjoint, non-parallel $k$-planes in $\mathbf{R}^d$, for $d \geq k+2$, whose union is a small subset of $\mathbf{R}^d$, either in Hausdorff dimension or Lebesgue measure, while $E$ itself has large dimension. As a second application, for any countable collection of vertical lines $w_i$ in the plane we construct a collection of nonvertical lines $H$, so that $F$, the union of lines in $H$, has positive Lebesgue measure, but each point of each line $w_i$ is contained in at most one $h\in H$ and, for each $w_i$, the Hausdorff dimension of $F\cap w_i$ is zero.
Keywords: Hausdorff dimension, Lebesgue measure, injective projections, union of lines, union of disjoint planes

Frank Coen 1 ; Nate Gillman 2 ; Tamás Keleti 3 ; Dylan King 4 ; Jennifer Zhu 5

1 Villanova University, Department of Mathematics & Statistics
2 Brown University, Department of Mathematics
3 Eötvös Loránd University, Institute of Mathematics
4 Wake Forest University, Department of Mathematics & Statistics
5 University of California, Department of Mathematics, Berkeley
@article{AFM_2021_46_2_a6,
     author = {Frank Coen and Nate Gillman and Tam\'as Keleti and Dylan King and Jennifer Zhu},
     title = {Large sets with small injective projections},
     journal = {Annales Fennici Mathematici},
     pages = {683--702},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/}
}
TY  - JOUR
AU  - Frank Coen
AU  - Nate Gillman
AU  - Tamás Keleti
AU  - Dylan King
AU  - Jennifer Zhu
TI  - Large sets with small injective projections
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 683
EP  - 702
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/
LA  - en
ID  - AFM_2021_46_2_a6
ER  - 
%0 Journal Article
%A Frank Coen
%A Nate Gillman
%A Tamás Keleti
%A Dylan King
%A Jennifer Zhu
%T Large sets with small injective projections
%J Annales Fennici Mathematici
%D 2021
%P 683-702
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/
%G en
%F AFM_2021_46_2_a6
Frank Coen; Nate Gillman; Tamás Keleti; Dylan King; Jennifer Zhu. Large sets with small injective projections. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/