Large sets with small injective projections
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702
Voir la notice de l'article provenant de la source Journal.fi
Let $\ell_1,\ell_2,\dots$ be a countable collection of lines in $\mathbf{R}^d$. For any $t \in [0,1]$ we construct a compact set $\Gamma\subseteq\mathbf{R}^d$ with Hausdorff dimension $d-1+t$ which projects injectively into each $\ell_i$, such that the image of each projection has dimension $t$. This immediately implies the existence of homeomorphisms between certain Cantor-type sets whose graphs have large dimensions. As an application, we construct a collection $E$ of disjoint, non-parallel $k$-planes in $\mathbf{R}^d$, for $d \geq k+2$, whose union is a small subset of $\mathbf{R}^d$, either in Hausdorff dimension or Lebesgue measure, while $E$ itself has large dimension. As a second application, for any countable collection of vertical lines $w_i$ in the plane we construct a collection of nonvertical lines $H$, so that $F$, the union of lines in $H$, has positive Lebesgue measure, but each point of each line $w_i$ is contained in at most one $h\in H$ and, for each $w_i$, the Hausdorff dimension of $F\cap w_i$ is zero.
Keywords:
Hausdorff dimension, Lebesgue measure, injective projections, union of lines, union of disjoint planes
Affiliations des auteurs :
Frank Coen 1 ; Nate Gillman 2 ; Tamás Keleti 3 ; Dylan King 4 ; Jennifer Zhu 5
@article{AFM_2021_46_2_a6,
author = {Frank Coen and Nate Gillman and Tam\'as Keleti and Dylan King and Jennifer Zhu},
title = {Large sets with small injective projections},
journal = {Annales Fennici Mathematici},
pages = {683--702},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/}
}
TY - JOUR AU - Frank Coen AU - Nate Gillman AU - Tamás Keleti AU - Dylan King AU - Jennifer Zhu TI - Large sets with small injective projections JO - Annales Fennici Mathematici PY - 2021 SP - 683 EP - 702 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/ LA - en ID - AFM_2021_46_2_a6 ER -
Frank Coen; Nate Gillman; Tamás Keleti; Dylan King; Jennifer Zhu. Large sets with small injective projections. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 683-702. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a6/