A class of summing operators acting in spaces of operators
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 667-681.

Voir la notice de l'article provenant de la source Journal.fi

Let $X$, $Y$ and $Z$ be Banach spaces and let $U$ be a subspace of $\mathcal{L}(X^*,Y)$, the Banach space of all operators from $X^*$ to $Y$. An operator $S\colon U \to Z$ is said to be $(\ell^s_p,\ell_p)$-summing (where $1\leq p <\infty$) if there is a constant $K\geq 0$ such that $\left( \sum_{i=1}^n \|S(T_i)\|_Z^p \right)^{1/p}\le K\sup_{x^* \in B_{X^*}} \left(\sum_{i=1}^n \|T_i(x^*)\|_Y^p\right)^{1/p}$ for every $n\in\mathbf{N}$ and all $T_1,\dots,T_n \in U$. In this paper we study this class of operators, introduced by Blasco and Signes as a natural generalization of the $(p,Y)$-summing operators of Kislyakov. On the one hand, we discuss Pietsch-type domination results for $(\ell^s_p,\ell_p)$-summing operators. In this direction, we provide a negative answer to a question raised by Blasco and Signes, and we also give new insight on a result by Botelho and Santos. On the other hand, we extend to this setting the classical theorem of Kwapien characterizing those operators which factor as $S_1\circ S_2$, where $S_2$ is absolutely $p$-summing and $S_1^*$ is absolutely $q$-summing ($1 and $1/p+1/q \leq 1$).
Keywords: Summing operator, dominated operator, ε-product of Banach spaces, strong operator topology, universally measurable function

José Rodríguez 1 ; Enrique A. Sánchez-Pérez 2

1 Universidad de Murcia, Dpto. de Ingeniería y Tecnología de Computadores
2 Universitat Politècnica de València, Instituto Universitario de Matemática Pura y Aplicada
@article{AFM_2021_46_2_a5,
     author = {Jos\'e Rodr{\'\i}guez and Enrique A. S\'anchez-P\'erez},
     title = {A class of summing operators acting in spaces of operators},
     journal = {Annales Fennici Mathematici},
     pages = {667--681},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a5/}
}
TY  - JOUR
AU  - José Rodríguez
AU  - Enrique A. Sánchez-Pérez
TI  - A class of summing operators acting in spaces of operators
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 667
EP  - 681
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a5/
LA  - en
ID  - AFM_2021_46_2_a5
ER  - 
%0 Journal Article
%A José Rodríguez
%A Enrique A. Sánchez-Pérez
%T A class of summing operators acting in spaces of operators
%J Annales Fennici Mathematici
%D 2021
%P 667-681
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a5/
%G en
%F AFM_2021_46_2_a5
José Rodríguez; Enrique A. Sánchez-Pérez. A class of summing operators acting in spaces of operators. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 667-681. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a5/