Atomic decomposition of finite signed measures on compacts of R^n
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 643-654
Voir la notice de l'article provenant de la source Journal.fi
Recently there has been interest in pairs of Banach spaces $(E_0,E)$ in an o-O relation and with $E_0^{**}=E$. It is known that this can be done for Lipschitz spaces on suitable metric spaces. In this paper we consider the case of a compact subset $K$ of $\mathbf{R}^n$ with the Euclidean metric, which does not give an o-O structure, but we use part of the theory concerning these pairs to find an atomic decomposition of the predual of Lip$(K)$. In particular, since the space $M(K)$ of finite signed measures on $K$, when endowed with the Kantorovich-Rubinstein norm, has as dual space Lip$(K)$, we can give an atomic decomposition for this space.
Keywords:
Lipschitz space, atomic decomposition, duality, Kantorovich-Rubinstein norm
Affiliations des auteurs :
Francesca Angrisani 1 ; Giacomo Ascione 1 ; Gianluigi Manzo 1
@article{AFM_2021_46_2_a3,
author = {Francesca Angrisani and Giacomo Ascione and Gianluigi Manzo},
title = {Atomic decomposition of finite signed measures on compacts of {R^n}},
journal = {Annales Fennici Mathematici},
pages = {643--654},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a3/}
}
TY - JOUR AU - Francesca Angrisani AU - Giacomo Ascione AU - Gianluigi Manzo TI - Atomic decomposition of finite signed measures on compacts of R^n JO - Annales Fennici Mathematici PY - 2021 SP - 643 EP - 654 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a3/ LA - en ID - AFM_2021_46_2_a3 ER -
Francesca Angrisani; Giacomo Ascione; Gianluigi Manzo. Atomic decomposition of finite signed measures on compacts of R^n. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 643-654. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a3/