We provide a quantitative lower bound to the Cheeger constant of a set $\Omega$ in both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide examples which show that these quantitative estimates are sharp.
@article{AFM_2021_46_2_a26,
author = {Vesa Julin and Giorgio Saracco},
title = {Quantitative lower bounds to the {Euclidean} and the {Gaussian} {Cheeger} constants},
journal = {Annales Fennici Mathematici},
pages = {1071--1087},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a26/}
}
TY - JOUR
AU - Vesa Julin
AU - Giorgio Saracco
TI - Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants
JO - Annales Fennici Mathematici
PY - 2021
SP - 1071
EP - 1087
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a26/
LA - en
ID - AFM_2021_46_2_a26
ER -
%0 Journal Article
%A Vesa Julin
%A Giorgio Saracco
%T Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants
%J Annales Fennici Mathematici
%D 2021
%P 1071-1087
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a26/
%G en
%F AFM_2021_46_2_a26
Vesa Julin; Giorgio Saracco. Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1071-1087. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a26/