1Syracuse University, Department of Mathematics 2Syracuse University, Department of Mathematics, and University of Jyväskylä, Department of Mathematics and Statistics 3University of Jyväskylä, Department of Mathematics and Statistics
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1053-1069
Cet article a éte moissonné depuis la source Journal.fi
We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question.
Keywords:
Cusp, mappings of integrable distortion, quasiconformal, quasidisk
Affiliations des auteurs :
Tadeusz Iwaniec 
1
;
Jani Onninen 
2
;
Zheng Zhu 
3
1
Syracuse University, Department of Mathematics
2
Syracuse University, Department of Mathematics, and University of Jyväskylä, Department of Mathematics and Statistics
3
University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2021_46_2_a25,
author = {Tadeusz Iwaniec and Jani Onninen and Zheng Zhu},
title = {Singularities in {L^p-quasidisks}},
journal = {Annales Fennici Mathematici},
pages = {1053--1069},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a25/}
}
TY - JOUR
AU - Tadeusz Iwaniec
AU - Jani Onninen
AU - Zheng Zhu
TI - Singularities in L^p-quasidisks
JO - Annales Fennici Mathematici
PY - 2021
SP - 1053
EP - 1069
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a25/
LA - en
ID - AFM_2021_46_2_a25
ER -
%0 Journal Article
%A Tadeusz Iwaniec
%A Jani Onninen
%A Zheng Zhu
%T Singularities in L^p-quasidisks
%J Annales Fennici Mathematici
%D 2021
%P 1053-1069
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a25/
%G en
%F AFM_2021_46_2_a25
Tadeusz Iwaniec; Jani Onninen; Zheng Zhu. Singularities in L^p-quasidisks. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1053-1069. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a25/