Three-term arithmetic progressions in subsets of F_q^∞ of large Fourier dimension
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1007-1030
Voir la notice de l'article provenant de la source Journal.fi
We show that subsets of $\mathbf{F}_q^{\infty}$ of large Fourier dimension must contain three-term arithmetic progressions. This contrasts with a construction of Shmerkin of a subset of $\mathbf{R}$ of Fourier dimension 1 with no three-term arithmetic progressions.
Keywords:
Fourier dimension, three-term arithmetic progressions, Fourier analysis, additive combinatorics
Affiliations des auteurs :
Robert Fraser 1
@article{AFM_2021_46_2_a23,
author = {Robert Fraser},
title = {Three-term arithmetic progressions in subsets of {F_q^\ensuremath{\infty}} of large {Fourier} dimension},
journal = {Annales Fennici Mathematici},
pages = {1007--1030},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a23/}
}
Robert Fraser. Three-term arithmetic progressions in subsets of F_q^∞ of large Fourier dimension. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1007-1030. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a23/