1Seoul National University, Department of Mathematical Sciences and RIM 2Saitama University, Graduate School of Science and Engineering, Department of Mathematics
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 993-1005
Cet article a éte moissonné depuis la source Journal.fi
In this paper we study the pointwise convergence problem along a tangential curve for the fractional Schrödinger equations in one spatial dimension and estimate the capacitary dimension of the divergence set. We extend a prior paper by Lee and the first author for the classical Schrödinger equation, which in itself contains a result due to Lee, Vargas and the first author, to the fractional Schrödinger equation. The proof is based on a decomposition argument without time localization, which has recently been introduced by the second author.
1
Seoul National University, Department of Mathematical Sciences and RIM
2
Saitama University, Graduate School of Science and Engineering, Department of Mathematics
@article{AFM_2021_46_2_a22,
author = {Chu-Hee Cho and Shobu Shiraki},
title = {Pointwise convergence along a tangential curve for the fractional {Schr\"odinger} equation},
journal = {Annales Fennici Mathematici},
pages = {993--1005},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/}
}
TY - JOUR
AU - Chu-Hee Cho
AU - Shobu Shiraki
TI - Pointwise convergence along a tangential curve for the fractional Schrödinger equation
JO - Annales Fennici Mathematici
PY - 2021
SP - 993
EP - 1005
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/
LA - en
ID - AFM_2021_46_2_a22
ER -
%0 Journal Article
%A Chu-Hee Cho
%A Shobu Shiraki
%T Pointwise convergence along a tangential curve for the fractional Schrödinger equation
%J Annales Fennici Mathematici
%D 2021
%P 993-1005
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/
%G en
%F AFM_2021_46_2_a22
Chu-Hee Cho; Shobu Shiraki. Pointwise convergence along a tangential curve for the fractional Schrödinger equation. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 993-1005. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/