Pointwise convergence along a tangential curve for the fractional Schrödinger equation
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 993-1005
Cet article a éte moissonné depuis la source Journal.fi
In this paper we study the pointwise convergence problem along a tangential curve for the fractional Schrödinger equations in one spatial dimension and estimate the capacitary dimension of the divergence set. We extend a prior paper by Lee and the first author for the classical Schrödinger equation, which in itself contains a result due to Lee, Vargas and the first author, to the fractional Schrödinger equation. The proof is based on a decomposition argument without time localization, which has recently been introduced by the second author.
Keywords:
Fractional Schrödinger equation, pointwise convergence, fractional dimension
Affiliations des auteurs :
Chu-Hee Cho 1 ; Shobu Shiraki 2
@article{AFM_2021_46_2_a22,
author = {Chu-Hee Cho and Shobu Shiraki},
title = {Pointwise convergence along a tangential curve for the fractional {Schr\"odinger} equation},
journal = {Annales Fennici Mathematici},
pages = {993--1005},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/}
}
TY - JOUR AU - Chu-Hee Cho AU - Shobu Shiraki TI - Pointwise convergence along a tangential curve for the fractional Schrödinger equation JO - Annales Fennici Mathematici PY - 2021 SP - 993 EP - 1005 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/ LA - en ID - AFM_2021_46_2_a22 ER -
Chu-Hee Cho; Shobu Shiraki. Pointwise convergence along a tangential curve for the fractional Schrödinger equation. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 993-1005. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a22/