We prove some general results on sequential convergence in Fréchet lattices that yield, as particular instances, the following results regarding a closed ideal $I$ of a Banach lattice $E$: (i) If two of the lattices $E$, $I$ and $E/I$ have the positive Schur property (the Schur property, respectively) then the third lattice has the positive Schur property (the Schur property, respectively) as well; (ii) If $I$ and $E/I$ have the dual positive Schur property, then $E$ also has this property; (iii) If $I$ has the weak Dunford-Pettis property and $E/I$ has the positive Schur property, then $E$ has the weak Dunford-Pettis property. Examples and applications are provided.
@article{AFM_2021_46_2_a2,
author = {Geraldo Botelho and Jos\'e Lucas P. Luiz},
title = {On the {Schur,} positive {Schur} and weak {Dunford{\textendash}Pettis} properties in {Fr\'echet} lattices},
journal = {Annales Fennici Mathematici},
pages = {633--642},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a2/}
}
TY - JOUR
AU - Geraldo Botelho
AU - José Lucas P. Luiz
TI - On the Schur, positive Schur and weak Dunford–Pettis properties in Fréchet lattices
JO - Annales Fennici Mathematici
PY - 2021
SP - 633
EP - 642
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a2/
LA - en
ID - AFM_2021_46_2_a2
ER -
%0 Journal Article
%A Geraldo Botelho
%A José Lucas P. Luiz
%T On the Schur, positive Schur and weak Dunford–Pettis properties in Fréchet lattices
%J Annales Fennici Mathematici
%D 2021
%P 633-642
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a2/
%G en
%F AFM_2021_46_2_a2
Geraldo Botelho; José Lucas P. Luiz. On the Schur, positive Schur and weak Dunford–Pettis properties in Fréchet lattices. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 633-642. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a2/