Quasisymmetric embeddability of weak tangents
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 909-944.

Voir la notice de l'article provenant de la source Journal.fi

In this paper, we study the quasisymmetric embeddability of weak tangents of metric spaces. We first show that quasisymmetric embeddability is hereditary, i.e., if $X$ can be quasisymmetrically embedded into $Y$, then every weak tangent of $X$ can be quasisymmetrically embedded into some weak tangent of $Y$, given that $X$ is proper and doubling. However, the converse is not true in general; we will illustrate this with several counterexamples. In special situations, we are able to show that the embeddability of weak tangents implies global or local embeddability of the ambient space. Finally, we apply our results to Gromov hyperbolic groups and visual spheres of expanding Thurston maps.
Keywords: Weak tangents, quasisymmetric embeddings, hyperbolic spaces, expanding Thurston maps

Wenbo Li 1

1 University of Toronto, Department of Mathematics
@article{AFM_2021_46_2_a18,
     author = {Wenbo Li},
     title = {Quasisymmetric embeddability of weak tangents},
     journal = {Annales Fennici Mathematici},
     pages = {909--944},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a18/}
}
TY  - JOUR
AU  - Wenbo Li
TI  - Quasisymmetric embeddability of weak tangents
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 909
EP  - 944
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a18/
LA  - en
ID  - AFM_2021_46_2_a18
ER  - 
%0 Journal Article
%A Wenbo Li
%T Quasisymmetric embeddability of weak tangents
%J Annales Fennici Mathematici
%D 2021
%P 909-944
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a18/
%G en
%F AFM_2021_46_2_a18
Wenbo Li. Quasisymmetric embeddability of weak tangents. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 909-944. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a18/