Universal commensurability augmented Teichmüller space and moduli space
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907
Voir la notice de l'article provenant de la source Journal.fi
It is known that every unbranched finite covering $\alpha\colon\widetilde{S}_{g(\alpha)}\rightarrow S$ of a compact Riemann surface $S$ with genus $g\geq 2$ induces an isometric embedding $\Gamma_{\alpha}$ from the Teichmüller space $T(S)$ to the Teichmüller space $T(\widetilde{S}_{g(\alpha)})$. Actually, it has been showed that the isometric embedding $\Gamma_{\alpha}$ can be extended isometrically to the augmented Teichmüller space $\widehat{T}(S)$ of $T(S)$. Using this result, we construct a direct limit $\widehat{T}_{\infty}(S)$ of augmented Teichmüller spaces, where the index runs over all unbranched finite coverings of $S$. Then, we show that the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ can extend isometrically on $\widehat{T}_{\infty}(S)$. Furthermore, for any $X_{\infty}\in T_{\infty}(S)$, its orbit of the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ on $\widehat{T}_{\infty}(S)$ is dense. Finally, we also construct a direct limit $\widehat{M}_{\infty}(S)$ of augmented moduli spaces by characteristic towers and show that the subgroup $\operatorname{Caut}(\pi_{1}(S))$ of $\operatorname{Mod}_{\infty}(S)$ acts on $\widehat{T}_{\infty}(S)$ to produce $\widehat{M}_{\infty}(S)$ as the quotient.
Keywords:
Augmented Teichmüller space, commensurability modular group, augmented moduli space, characteristic tower
Affiliations des auteurs :
Guangming Hu 1 ; Hideki Miyachi 2 ; Yi Qi 3
@article{AFM_2021_46_2_a17,
author = {Guangming Hu and Hideki Miyachi and Yi Qi},
title = {Universal commensurability augmented {Teichm\"uller} space and moduli space},
journal = {Annales Fennici Mathematici},
pages = {897--907},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/}
}
TY - JOUR AU - Guangming Hu AU - Hideki Miyachi AU - Yi Qi TI - Universal commensurability augmented Teichmüller space and moduli space JO - Annales Fennici Mathematici PY - 2021 SP - 897 EP - 907 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/ LA - en ID - AFM_2021_46_2_a17 ER -
Guangming Hu; Hideki Miyachi; Yi Qi. Universal commensurability augmented Teichmüller space and moduli space. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/