Universal commensurability augmented Teichmüller space and moduli space
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907.

Voir la notice de l'article provenant de la source Journal.fi

It is known that every unbranched finite covering $\alpha\colon\widetilde{S}_{g(\alpha)}\rightarrow S$ of a compact Riemann surface $S$ with genus $g\geq 2$ induces an isometric embedding $\Gamma_{\alpha}$ from the Teichmüller space $T(S)$ to the Teichmüller space $T(\widetilde{S}_{g(\alpha)})$. Actually, it has been showed that the isometric embedding $\Gamma_{\alpha}$ can be extended isometrically to the augmented Teichmüller space $\widehat{T}(S)$ of $T(S)$. Using this result, we construct a direct limit $\widehat{T}_{\infty}(S)$ of augmented Teichmüller spaces, where the index runs over all unbranched finite coverings of $S$. Then, we show that the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ can extend isometrically on $\widehat{T}_{\infty}(S)$. Furthermore, for any $X_{\infty}\in T_{\infty}(S)$, its orbit of the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ on $\widehat{T}_{\infty}(S)$ is dense. Finally, we also construct a direct limit $\widehat{M}_{\infty}(S)$ of augmented moduli spaces by characteristic towers and show that the subgroup $\operatorname{Caut}(\pi_{1}(S))$ of $\operatorname{Mod}_{\infty}(S)$ acts on $\widehat{T}_{\infty}(S)$ to produce $\widehat{M}_{\infty}(S)$ as the quotient.  
Keywords: Augmented Teichmüller space, commensurability modular group, augmented moduli space, characteristic tower

Guangming Hu 1 ; Hideki Miyachi 2 ; Yi Qi 3

1 Jinling Institute of Technology, College of Science
2 Kanazawa University, College of Science and Engineering, School of Mathematics and Physics
3 Beihang University, School of Mathematics and Systems Science
@article{AFM_2021_46_2_a17,
     author = {Guangming Hu and Hideki Miyachi and Yi Qi},
     title = {Universal commensurability augmented {Teichm\"uller} space  and moduli space},
     journal = {Annales Fennici Mathematici},
     pages = {897--907},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/}
}
TY  - JOUR
AU  - Guangming Hu
AU  - Hideki Miyachi
AU  - Yi Qi
TI  - Universal commensurability augmented Teichmüller space  and moduli space
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 897
EP  - 907
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/
LA  - en
ID  - AFM_2021_46_2_a17
ER  - 
%0 Journal Article
%A Guangming Hu
%A Hideki Miyachi
%A Yi Qi
%T Universal commensurability augmented Teichmüller space  and moduli space
%J Annales Fennici Mathematici
%D 2021
%P 897-907
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/
%G en
%F AFM_2021_46_2_a17
Guangming Hu; Hideki Miyachi; Yi Qi. Universal commensurability augmented Teichmüller space  and moduli space. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/