1Jinling Institute of Technology, College of Science 2Kanazawa University, College of Science and Engineering, School of Mathematics and Physics 3Beihang University, School of Mathematics and Systems Science
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907
Cet article a éte moissonné depuis la source Journal.fi
It is known that every unbranched finite covering $\alpha\colon\widetilde{S}_{g(\alpha)}\rightarrow S$ of a compact Riemann surface $S$ with genus $g\geq 2$ induces an isometric embedding $\Gamma_{\alpha}$ from the Teichmüller space $T(S)$ to the Teichmüller space $T(\widetilde{S}_{g(\alpha)})$. Actually, it has been showed that the isometric embedding $\Gamma_{\alpha}$ can be extended isometrically to the augmented Teichmüller space $\widehat{T}(S)$ of $T(S)$. Using this result, we construct a direct limit $\widehat{T}_{\infty}(S)$ of augmented Teichmüller spaces, where the index runs over all unbranched finite coverings of $S$. Then, we show that the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ can extend isometrically on $\widehat{T}_{\infty}(S)$. Furthermore, for any $X_{\infty}\in T_{\infty}(S)$, its orbit of the action of the universal commensurability modular group $\operatorname{Mod}_{\infty}(S)$ on $\widehat{T}_{\infty}(S)$ is dense. Finally, we also construct a direct limit $\widehat{M}_{\infty}(S)$ of augmented moduli spaces by characteristic towers and show that the subgroup $\operatorname{Caut}(\pi_{1}(S))$ of $\operatorname{Mod}_{\infty}(S)$ acts on $\widehat{T}_{\infty}(S)$ to produce $\widehat{M}_{\infty}(S)$ as the quotient.
1
Jinling Institute of Technology, College of Science
2
Kanazawa University, College of Science and Engineering, School of Mathematics and Physics
3
Beihang University, School of Mathematics and Systems Science
@article{AFM_2021_46_2_a17,
author = {Guangming Hu and Hideki Miyachi and Yi Qi},
title = {Universal commensurability augmented {Teichm\"uller} space and moduli space},
journal = {Annales Fennici Mathematici},
pages = {897--907},
year = {2021},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/}
}
TY - JOUR
AU - Guangming Hu
AU - Hideki Miyachi
AU - Yi Qi
TI - Universal commensurability augmented Teichmüller space and moduli space
JO - Annales Fennici Mathematici
PY - 2021
SP - 897
EP - 907
VL - 46
IS - 2
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/
LA - en
ID - AFM_2021_46_2_a17
ER -
%0 Journal Article
%A Guangming Hu
%A Hideki Miyachi
%A Yi Qi
%T Universal commensurability augmented Teichmüller space and moduli space
%J Annales Fennici Mathematici
%D 2021
%P 897-907
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/
%G en
%F AFM_2021_46_2_a17
Guangming Hu; Hideki Miyachi; Yi Qi. Universal commensurability augmented Teichmüller space and moduli space. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 897-907. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a17/