On a Bernoulli-type overdetermined free boundary problem
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 601-618.

Voir la notice de l'article provenant de la source Journal.fi

  In this article we study a Bernoulli-type free boundary problem and generalize a work of Henrot and Shahgholian in [25] to $\mathcal{A}$-harmonic PDEs. These are quasi-linear elliptic PDEs whose structure is modelled on the $p$-Laplace equation for a fixed $1. In particular, we show that if $K$ is a bounded convex set satisfying the interior ball condition and $c>0$ is a given constant, then there exists a unique convex domain $\Omega$ with $K\subset \Omega$ and a function $u$ which is $\mathcal{A}$-harmonic in $\Omega\setminus K$, has continuous boundary values 1 on $\partial K$ and 0 on $\partial\Omega$, such that $|\nabla u|=c$ on $\partial \Omega$. Moreover, $\partial\Omega$ is $C^{1,\gamma}$ for some $\gamma>0$, and it is smooth provided $\mathcal{A}$ is smooth in $\mathbf{R}^n \setminus \{0\}$. We also show that the super level sets $\{u>t\}$ are convex for $t\in (0,1)$.
Keywords: Quasilinear elliptic equations and p-Laplacian, degenerate elliptic equations, free boundary problems, Bernoulli-type free boundary problems

Murat Akman 1 ; Agnid Banerjee 2 ; Mariana Smit Vega Garcia 3

1 University of Essex, Department of Mathematical Sciences
2 Tata Institute of Fundamental Research, Center for Applicable Mathematics
3 Western Washington University, Department of Mathematics
@article{AFM_2021_46_2_a0,
     author = {Murat Akman and Agnid Banerjee and Mariana Smit Vega Garcia},
     title = {On a {Bernoulli-type} overdetermined free boundary problem},
     journal = {Annales Fennici Mathematici},
     pages = {601--618},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/}
}
TY  - JOUR
AU  - Murat Akman
AU  - Agnid Banerjee
AU  - Mariana Smit Vega Garcia
TI  - On a Bernoulli-type overdetermined free boundary problem
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 601
EP  - 618
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/
LA  - en
ID  - AFM_2021_46_2_a0
ER  - 
%0 Journal Article
%A Murat Akman
%A Agnid Banerjee
%A Mariana Smit Vega Garcia
%T On a Bernoulli-type overdetermined free boundary problem
%J Annales Fennici Mathematici
%D 2021
%P 601-618
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/
%G en
%F AFM_2021_46_2_a0
Murat Akman; Agnid Banerjee; Mariana Smit Vega Garcia. On a Bernoulli-type overdetermined free boundary problem. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 601-618. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/