Voir la notice de l'article provenant de la source Journal.fi
. In particular, we show that if $K$ is a bounded convex set satisfying the interior ball condition and $c>0$ is a given constant, then there exists a unique convex domain $\Omega$ with $K\subset \Omega$ and a function $u$ which is $\mathcal{A}$-harmonic in $\Omega\setminus K$, has continuous boundary values 1 on $\partial K$ and 0 on $\partial\Omega$, such that $|\nabla u|=c$ on $\partial \Omega$. Moreover, $\partial\Omega$ is $C^{1,\gamma}$ for some $\gamma>0$, and it is smooth provided $\mathcal{A}$ is smooth in $\mathbf{R}^n \setminus \{0\}$. We also show that the super level sets $\{u>t\}$ are convex for $t\in (0,1)$.
Murat Akman 1 ; Agnid Banerjee 2 ; Mariana Smit Vega Garcia 3
@article{AFM_2021_46_2_a0, author = {Murat Akman and Agnid Banerjee and Mariana Smit Vega Garcia}, title = {On a {Bernoulli-type} overdetermined free boundary problem}, journal = {Annales Fennici Mathematici}, pages = {601--618}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/} }
TY - JOUR AU - Murat Akman AU - Agnid Banerjee AU - Mariana Smit Vega Garcia TI - On a Bernoulli-type overdetermined free boundary problem JO - Annales Fennici Mathematici PY - 2021 SP - 601 EP - 618 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/ LA - en ID - AFM_2021_46_2_a0 ER -
Murat Akman; Agnid Banerjee; Mariana Smit Vega Garcia. On a Bernoulli-type overdetermined free boundary problem. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 601-618. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a0/