On Carleson measures induced by Beltrami coefficients being compatible with Fuchsian groups
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 67-77
Voir la notice de l'article provenant de la source Journal.fi
Let $\mu$ be a Beltrami coefficient on the unit disk, which is compatible with a finitely generated Fuchsian group $G$ of the second kind. In this paper we show that if $\frac{|\mu|^{2}}{1-|z|^{2}}\,dx\,dy$ satisfies the Carleson condition on the infinite boundary of the Dirichlet fundamental domain of $G$, then $\frac{|\mu|^{2}}{1-|z|^{2}}\,dx\,dy$ is a Carleson measure on the unit disk.
Keywords:
Fuchsian group, Carleson measure, Ruelle's property
Affiliations des auteurs :
Shengjin Huo 1
@article{AFM_2021_46_1_a4,
author = {Shengjin Huo},
title = {On {Carleson} measures induced by {Beltrami} coefficients being compatible with {Fuchsian} groups},
journal = {Annales Fennici Mathematici},
pages = {67--77},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a4/}
}
TY - JOUR AU - Shengjin Huo TI - On Carleson measures induced by Beltrami coefficients being compatible with Fuchsian groups JO - Annales Fennici Mathematici PY - 2021 SP - 67 EP - 77 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a4/ LA - en ID - AFM_2021_46_1_a4 ER -
Shengjin Huo. On Carleson measures induced by Beltrami coefficients being compatible with Fuchsian groups. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a4/