We define the geometric modulus $GM(A)$ of a ring $A$ in a normed space $E$ and show that a set-bounded homeomorphism $f\colon E\to E$ is bilipschitz if and only if $|GM(A)-GM(fA)|\le c$ for all rings $A\subset E$.
@article{AFM_2021_46_1_a35,
author = {Pekka Tukia and Jussi V\"ais\"al\"a},
title = {Rings and bilipschitz maps in {Banach} spaces},
journal = {Annales Fennici Mathematici},
pages = {587--591},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a35/}
}
TY - JOUR
AU - Pekka Tukia
AU - Jussi Väisälä
TI - Rings and bilipschitz maps in Banach spaces
JO - Annales Fennici Mathematici
PY - 2021
SP - 587
EP - 591
VL - 46
IS - 1
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a35/
LA - en
ID - AFM_2021_46_1_a35
ER -
%0 Journal Article
%A Pekka Tukia
%A Jussi Väisälä
%T Rings and bilipschitz maps in Banach spaces
%J Annales Fennici Mathematici
%D 2021
%P 587-591
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a35/
%G en
%F AFM_2021_46_1_a35
Pekka Tukia; Jussi Väisälä. Rings and bilipschitz maps in Banach spaces. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 587-591. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a35/