Intrinsically Lipschitz functions with normal target in Carnot groups
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 571-579.

Voir la notice de l'article provenant de la source Journal.fi

We provide a Rademacher theorem for intrinsically Lipschitz functions $\phi\colon U\subseteq\mathbf{W}\to\mathbf{L}$, where $U$ is a Borel set, $\mathbf{W}$ and $\mathbf{L}$ are complementary subgroups of a Carnot group, where we require that $\mathbf{L}$ is a normal subgroup. Our hypotheses are satisfied for example when $\mathbf{W}$ is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.
Keywords: Carnot groups, intrinsically Lipschitz functions, Rademacher theorem, area formula

Gioacchino Antonelli 1 ; Andrea Merlo 2

1 Scuola Normale Superiore
2 Universitá di Pisa
@article{AFM_2021_46_1_a33,
     author = {Gioacchino Antonelli and Andrea Merlo},
     title = {Intrinsically {Lipschitz} functions with normal target in {Carnot} groups},
     journal = {Annales Fennici Mathematici},
     pages = {571--579},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/}
}
TY  - JOUR
AU  - Gioacchino Antonelli
AU  - Andrea Merlo
TI  - Intrinsically Lipschitz functions with normal target in Carnot groups
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 571
EP  - 579
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/
LA  - en
ID  - AFM_2021_46_1_a33
ER  - 
%0 Journal Article
%A Gioacchino Antonelli
%A Andrea Merlo
%T Intrinsically Lipschitz functions with normal target in Carnot groups
%J Annales Fennici Mathematici
%D 2021
%P 571-579
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/
%G en
%F AFM_2021_46_1_a33
Gioacchino Antonelli; Andrea Merlo. Intrinsically Lipschitz functions with normal target in Carnot groups. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 571-579. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/