Intrinsically Lipschitz functions with normal target in Carnot groups
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 571-579
Cet article a éte moissonné depuis la source Journal.fi
We provide a Rademacher theorem for intrinsically Lipschitz functions $\phi\colon U\subseteq\mathbf{W}\to\mathbf{L}$, where $U$ is a Borel set, $\mathbf{W}$ and $\mathbf{L}$ are complementary subgroups of a Carnot group, where we require that $\mathbf{L}$ is a normal subgroup. Our hypotheses are satisfied for example when $\mathbf{W}$ is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.
Keywords:
Carnot groups, intrinsically Lipschitz functions, Rademacher theorem, area formula
Affiliations des auteurs :
Gioacchino Antonelli 1 ; Andrea Merlo 2
@article{AFM_2021_46_1_a33,
author = {Gioacchino Antonelli and Andrea Merlo},
title = {Intrinsically {Lipschitz} functions with normal target in {Carnot} groups},
journal = {Annales Fennici Mathematici},
pages = {571--579},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/}
}
Gioacchino Antonelli; Andrea Merlo. Intrinsically Lipschitz functions with normal target in Carnot groups. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 571-579. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a33/