Wild examples of countably rectifiable sets
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 553-570
Voir la notice de l'article provenant de la source Journal.fi
We study the geometry of sets based on the behavior of the Jones function, $J_{E}(x) = \int_{0}^{1} \beta_{E;2}^{1}(x,r)^{2} \frac{dr}{r}$. We construct two examples of countably 1-rectifiable sets in $\mathbf{R}^{2}$ with positive and finite $\mathcal{H}^1$-measure for which the Jones function is nowhere locally integrable. These examples satisfy different regularity properties: one is connected and one is Ahlfors regular. Both examples can be generalized to higher-dimension and co-dimension.
Keywords:
Jones square function, rectifiability, traveling salesman, beta numbers
Affiliations des auteurs :
Max Goering 1 ; Sean McCurdy 2
@article{AFM_2021_46_1_a32,
author = {Max Goering and Sean McCurdy},
title = {Wild examples of countably rectifiable sets},
journal = {Annales Fennici Mathematici},
pages = {553--570},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a32/}
}
Max Goering; Sean McCurdy. Wild examples of countably rectifiable sets. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 553-570. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a32/