Gradient bounds for radial maximal functions
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 495-521.

Voir la notice de l'article provenant de la source Journal.fi

In this paper we study the regularity properties of certain maximal operators of convolution type at the endpoint $p=1$, when acting on radial data. In particular, for the heat flow maximal operator and the Poisson maximal operator, when the initial datum $u_0 \in W^{1,1}(\mathbf{R}^d)$ is a radial function, we show that the associated maximal function $u^*$ is weakly differentiable and \[\|\nabla u^*\|_{L^1(\mathbf{R}^d)} \lesssim_d \|\nabla u_0\|_{L^1(\mathbf{R}^d)}.\] This establishes the analogue of a recent result of Luiro for the uncentered Hardy-Littlewood maximal operator, now in a centered setting with smooth kernels. In a second part of the paper, we establish similar gradient bounds for maximal operators on the sphere $\mathbf{S}^d$, when acting on polar functions. Our study includes the uncentered Hardy-Littlewood maximal operator, the heat flow maximal operator and the Poisson maximal operator on $\mathbf{S}^d$.
Keywords: Maximal operators, Sobolev spaces, bounded variation, convolution, sphere

Emanuel Carneiro 1 ; Cristian González-Riquelme 2

1 ICTP - The Abdus Salam International Centre for Theoretical Physics and IMPA - Instituto de Matemática Pura e Aplicada
2 IMPA - Instituto de Matemática Pura e Aplicada
@article{AFM_2021_46_1_a28,
     author = {Emanuel Carneiro and Cristian Gonz\'alez-Riquelme},
     title = {Gradient bounds for radial maximal functions},
     journal = {Annales Fennici Mathematici},
     pages = {495--521},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/}
}
TY  - JOUR
AU  - Emanuel Carneiro
AU  - Cristian González-Riquelme
TI  - Gradient bounds for radial maximal functions
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 495
EP  - 521
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/
LA  - en
ID  - AFM_2021_46_1_a28
ER  - 
%0 Journal Article
%A Emanuel Carneiro
%A Cristian González-Riquelme
%T Gradient bounds for radial maximal functions
%J Annales Fennici Mathematici
%D 2021
%P 495-521
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/
%G en
%F AFM_2021_46_1_a28
Emanuel Carneiro; Cristian González-Riquelme. Gradient bounds for radial maximal functions. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 495-521. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/