Gradient bounds for radial maximal functions
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 495-521
Cet article a éte moissonné depuis la source Journal.fi
In this paper we study the regularity properties of certain maximal operators of convolution type at the endpoint $p=1$, when acting on radial data. In particular, for the heat flow maximal operator and the Poisson maximal operator, when the initial datum $u_0 \in W^{1,1}(\mathbf{R}^d)$ is a radial function, we show that the associated maximal function $u^*$ is weakly differentiable and \[\|\nabla u^*\|_{L^1(\mathbf{R}^d)} \lesssim_d \|\nabla u_0\|_{L^1(\mathbf{R}^d)}.\] This establishes the analogue of a recent result of Luiro for the uncentered Hardy-Littlewood maximal operator, now in a centered setting with smooth kernels. In a second part of the paper, we establish similar gradient bounds for maximal operators on the sphere $\mathbf{S}^d$, when acting on polar functions. Our study includes the uncentered Hardy-Littlewood maximal operator, the heat flow maximal operator and the Poisson maximal operator on $\mathbf{S}^d$.
Keywords:
Maximal operators, Sobolev spaces, bounded variation, convolution, sphere
Affiliations des auteurs :
Emanuel Carneiro 1 ; Cristian González-Riquelme 2
@article{AFM_2021_46_1_a28,
author = {Emanuel Carneiro and Cristian Gonz\'alez-Riquelme},
title = {Gradient bounds for radial maximal functions},
journal = {Annales Fennici Mathematici},
pages = {495--521},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/}
}
Emanuel Carneiro; Cristian González-Riquelme. Gradient bounds for radial maximal functions. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 495-521. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a28/