Rectifiability of RCD(K,N) spaces via δ-splitting maps
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 465-482
Cet article a éte moissonné depuis la source Journal.fi
In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via $\delta$-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.
Keywords:
Rectifiability, RCD space, tangent cone
Affiliations des auteurs :
Elia Bruè 1 ; Enrico Pasqualetto 2 ; Daniele Semola 1
@article{AFM_2021_46_1_a26,
author = {Elia Bru\`e and Enrico Pasqualetto and Daniele Semola},
title = {Rectifiability of {RCD(K,N)} spaces via \ensuremath{\delta}-splitting maps},
journal = {Annales Fennici Mathematici},
pages = {465--482},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/}
}
Elia Bruè; Enrico Pasqualetto; Daniele Semola. Rectifiability of RCD(K,N) spaces via δ-splitting maps. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 465-482. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/