In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via $\delta$-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.
@article{AFM_2021_46_1_a26,
author = {Elia Bru\`e and Enrico Pasqualetto and Daniele Semola},
title = {Rectifiability of {RCD(K,N)} spaces via \ensuremath{\delta}-splitting maps},
journal = {Annales Fennici Mathematici},
pages = {465--482},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/}
}
TY - JOUR
AU - Elia Bruè
AU - Enrico Pasqualetto
AU - Daniele Semola
TI - Rectifiability of RCD(K,N) spaces via δ-splitting maps
JO - Annales Fennici Mathematici
PY - 2021
SP - 465
EP - 482
VL - 46
IS - 1
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/
LA - en
ID - AFM_2021_46_1_a26
ER -