Rectifiability of RCD(K,N) spaces via δ-splitting maps
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 465-482.

Voir la notice de l'article provenant de la source Journal.fi

  In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via $\delta$-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.
Keywords: Rectifiability, RCD space, tangent cone

Elia Bruè 1 ; Enrico Pasqualetto 2 ; Daniele Semola 1

1 Scuola Normale Superiore
2 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2021_46_1_a26,
     author = {Elia Bru\`e and Enrico Pasqualetto and Daniele Semola},
     title = {Rectifiability of {RCD(K,N)} spaces via \ensuremath{\delta}-splitting maps},
     journal = {Annales Fennici Mathematici},
     pages = {465--482},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/}
}
TY  - JOUR
AU  - Elia Bruè
AU  - Enrico Pasqualetto
AU  - Daniele Semola
TI  - Rectifiability of RCD(K,N) spaces via δ-splitting maps
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 465
EP  - 482
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/
LA  - en
ID  - AFM_2021_46_1_a26
ER  - 
%0 Journal Article
%A Elia Bruè
%A Enrico Pasqualetto
%A Daniele Semola
%T Rectifiability of RCD(K,N) spaces via δ-splitting maps
%J Annales Fennici Mathematici
%D 2021
%P 465-482
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/
%G en
%F AFM_2021_46_1_a26
Elia Bruè; Enrico Pasqualetto; Daniele Semola. Rectifiability of RCD(K,N) spaces via δ-splitting maps. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 465-482. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a26/