Rough isometry between Gromov hyperbolic spaces and uniformization
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 449-464.

Voir la notice de l'article provenant de la source Journal.fi

  In this note we show that given two complete geodesic Gromov hyperbolic spaces that are roughly isometric and an arbitrary $\epsilon>0$ (not necessarily small), either the uniformization of both spaces with parameter $\epsilon$ results in uniform domains, or else neither uniformized space is a uniform domain. The terminology of "uniformization" is from [BHK], where it is shown that the uniformization, with parameter $\epsilon>0$, of a complete geodesic Gromov hyperbolic space results in a uniform domain provided $\epsilon$ is small enough.
Keywords: Gromov hyperbolic, uniform domain, rough isometry, uniformization

Jeff Lindquist 1 ; Nageswari Shanmugalingam 1

1 University of Cincinnati, Department of Mathematical Sciences
@article{AFM_2021_46_1_a25,
     author = {Jeff Lindquist and Nageswari Shanmugalingam},
     title = {Rough isometry between {Gromov} hyperbolic spaces and uniformization},
     journal = {Annales Fennici Mathematici},
     pages = {449--464},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/}
}
TY  - JOUR
AU  - Jeff Lindquist
AU  - Nageswari Shanmugalingam
TI  - Rough isometry between Gromov hyperbolic spaces and uniformization
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 449
EP  - 464
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/
LA  - en
ID  - AFM_2021_46_1_a25
ER  - 
%0 Journal Article
%A Jeff Lindquist
%A Nageswari Shanmugalingam
%T Rough isometry between Gromov hyperbolic spaces and uniformization
%J Annales Fennici Mathematici
%D 2021
%P 449-464
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/
%G en
%F AFM_2021_46_1_a25
Jeff Lindquist; Nageswari Shanmugalingam. Rough isometry between Gromov hyperbolic spaces and uniformization. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 449-464. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/