Rough isometry between Gromov hyperbolic spaces and uniformization
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 449-464
Cet article a éte moissonné depuis la source Journal.fi
In this note we show that given two complete geodesic Gromov hyperbolic spaces that are roughly isometric and an arbitrary $\epsilon>0$ (not necessarily small), either the uniformization of both spaces with parameter $\epsilon$ results in uniform domains, or else neither uniformized space is a uniform domain. The terminology of "uniformization" is from [BHK], where it is shown that the uniformization, with parameter $\epsilon>0$, of a complete geodesic Gromov hyperbolic space results in a uniform domain provided $\epsilon$ is small enough.
Keywords:
Gromov hyperbolic, uniform domain, rough isometry, uniformization
Affiliations des auteurs :
Jeff Lindquist 1 ; Nageswari Shanmugalingam 1
@article{AFM_2021_46_1_a25,
author = {Jeff Lindquist and Nageswari Shanmugalingam},
title = {Rough isometry between {Gromov} hyperbolic spaces and uniformization},
journal = {Annales Fennici Mathematici},
pages = {449--464},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/}
}
Jeff Lindquist; Nageswari Shanmugalingam. Rough isometry between Gromov hyperbolic spaces and uniformization. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 449-464. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a25/