Stability of the Denjoy-Wolff theorem
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 421-431
Cet article a éte moissonné depuis la source Journal.fi
The Denjoy-Wolff theorem is a foundational result in complex dynamics, which describes the dynamical behaviour of the sequence of iterates of a holomorphic self-map $f$ of the unit disc $\mathbf{D}$. Far less well understood are nonautonomous dynamical systems $F_n=f_n\circ f_{n-1} \circ \dots \circ f_1$ and $G_n=g_1\circ g_{2} \circ \dots \circ g_n$, for $n=1,2,\ldots$, where $f_i$ and $g_j$ are holomorphic self-maps of $\mathbf{D}$. Here we obtain a thorough understanding of such systems $(F_n)$ and $(G_n)$ under the assumptions that $f_n\to f$ and $g_n\to f$. We determine when the dynamics of $(F_n)$ and $(G_n)$ mirror that of $(f^n)$, as specified by the Denjoy-Wolff theorem, thereby providing insight into the stability of the Denjoy-Wolff theorem under perturbations of the map $f$.
Keywords:
Denjoy-Wolff theorem, holomorphic map, hyperbolic metric
Affiliations des auteurs :
Argyrios Christodoulou 1 ; Ian Short 2
@article{AFM_2021_46_1_a23,
author = {Argyrios Christodoulou and Ian Short},
title = {Stability of the {Denjoy-Wolff} theorem},
journal = {Annales Fennici Mathematici},
pages = {421--431},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a23/}
}
Argyrios Christodoulou; Ian Short. Stability of the Denjoy-Wolff theorem. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 421-431. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a23/