Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 395-420.

Voir la notice de l'article provenant de la source Journal.fi

In this paper we use Galerkin method to investigate the existence of positive solution for a class of singular and quasilinear elliptic problems given by \[\begin{cases}-\operatorname{div}(a_0(|\nabla u|^{p_0})|\nabla u|^{p_{0}-2}\nabla u)= \displaystyle\frac {\lambda_0}{u^{\beta_0}} + f_0(u),\ u>0 &in\ \Omega,\\ u=0 &on\ \partial\Omega,\end{cases}\] and its version for systems given by \[\begin{cases}-\operatorname{div}(a_1(\vert\nabla u\vert^{p_1})\ \vert \nabla u\vert ^{p_1-2}\ \nabla u)=\dfrac{\lambda_1}{u^{\beta_1}}+f_1(v) &in\ \Omega,\\ -\operatorname{div}(a_2(\vert\nabla v\vert^{p_2})\ \vert \nabla v\vert ^{p_2-2}\ \nabla v)=\dfrac{\lambda_2}{v^{\beta_2}}+f_2(u) &in\ \Omega,\\ u,v>0 &in\ \Omega,\\ u=v=0 &on\ \partial\Omega,\end{cases}\] where $\Omega\subset\mathbf{R}^{N}$ is bounded smooth domain with $N\geq 3$ and for $i=0,1,2$ we have $2 \leq p_i < N$, $0<\beta_i \leq 1$, $\lambda_i>0$ and $f_i$ are continuous functions. The hypotheses on the $C^1$-functions $a_i\colon \mathbf{R}^+\rightarrow \mathbf{R}^+$ allow to consider a large class of quasilinear operators.  
Keywords: Galerkin method, exponential growth, Trudinger-Moser inequality, Hardy-Sobolev inequality

Suellen Cristina Q. Arruda 1 ; Giovany M. Figueiredo 2 ; Rubia G. Nascimento 3

1 Universidade Federal do Pará - UFPA, Faculdade de Ciências Exatas e Tecnologia
2 Universidade de Brasília - UNB, Departamento de Matemática
3 Universidade Federal do Pará - UFPA, Instituto de Ciências Exatas e Naturais
@article{AFM_2021_46_1_a22,
     author = {Suellen Cristina Q. Arruda and Giovany M. Figueiredo and Rubia G. Nascimento},
     title = {Existence of positive solutions for a class  of singular and quasilinear  elliptic problems with critical exponential growth},
     journal = {Annales Fennici Mathematici},
     pages = {395--420},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/}
}
TY  - JOUR
AU  - Suellen Cristina Q. Arruda
AU  - Giovany M. Figueiredo
AU  - Rubia G. Nascimento
TI  - Existence of positive solutions for a class  of singular and quasilinear  elliptic problems with critical exponential growth
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 395
EP  - 420
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/
LA  - en
ID  - AFM_2021_46_1_a22
ER  - 
%0 Journal Article
%A Suellen Cristina Q. Arruda
%A Giovany M. Figueiredo
%A Rubia G. Nascimento
%T Existence of positive solutions for a class  of singular and quasilinear  elliptic problems with critical exponential growth
%J Annales Fennici Mathematici
%D 2021
%P 395-420
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/
%G en
%F AFM_2021_46_1_a22
Suellen Cristina Q. Arruda; Giovany M. Figueiredo; Rubia G. Nascimento. Existence of positive solutions for a class  of singular and quasilinear  elliptic problems with critical exponential growth. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 395-420. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/