Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 395-420
Voir la notice de l'article provenant de la source Journal.fi
In this paper we use Galerkin method to investigate the existence of positive solution for a class of singular and quasilinear elliptic problems given by \[\begin{cases}-\operatorname{div}(a_0(|\nabla u|^{p_0})|\nabla u|^{p_{0}-2}\nabla u)= \displaystyle\frac {\lambda_0}{u^{\beta_0}} + f_0(u),\ u>0 &in\ \Omega,\\ u=0 &on\ \partial\Omega,\end{cases}\] and its version for systems given by \[\begin{cases}-\operatorname{div}(a_1(\vert\nabla u\vert^{p_1})\ \vert \nabla u\vert ^{p_1-2}\ \nabla u)=\dfrac{\lambda_1}{u^{\beta_1}}+f_1(v) &in\ \Omega,\\ -\operatorname{div}(a_2(\vert\nabla v\vert^{p_2})\ \vert \nabla v\vert ^{p_2-2}\ \nabla v)=\dfrac{\lambda_2}{v^{\beta_2}}+f_2(u) &in\ \Omega,\\ u,v>0 &in\ \Omega,\\ u=v=0 &on\ \partial\Omega,\end{cases}\] where $\Omega\subset\mathbf{R}^{N}$ is bounded smooth domain with $N\geq 3$ and for $i=0,1,2$ we have $2 \leq p_i < N$, $0<\beta_i \leq 1$, $\lambda_i>0$ and $f_i$ are continuous functions. The hypotheses on the $C^1$-functions $a_i\colon \mathbf{R}^+\rightarrow \mathbf{R}^+$ allow to consider a large class of quasilinear operators.
Keywords:
Galerkin method, exponential growth, Trudinger-Moser inequality, Hardy-Sobolev inequality
Affiliations des auteurs :
Suellen Cristina Q. Arruda 1 ; Giovany M. Figueiredo 2 ; Rubia G. Nascimento 3
@article{AFM_2021_46_1_a22,
author = {Suellen Cristina Q. Arruda and Giovany M. Figueiredo and Rubia G. Nascimento},
title = {Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth},
journal = {Annales Fennici Mathematici},
pages = {395--420},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/}
}
TY - JOUR AU - Suellen Cristina Q. Arruda AU - Giovany M. Figueiredo AU - Rubia G. Nascimento TI - Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth JO - Annales Fennici Mathematici PY - 2021 SP - 395 EP - 420 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/ LA - en ID - AFM_2021_46_1_a22 ER -
%0 Journal Article %A Suellen Cristina Q. Arruda %A Giovany M. Figueiredo %A Rubia G. Nascimento %T Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth %J Annales Fennici Mathematici %D 2021 %P 395-420 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/ %G en %F AFM_2021_46_1_a22
Suellen Cristina Q. Arruda; Giovany M. Figueiredo; Rubia G. Nascimento. Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 395-420. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a22/