On Ahlfors' imaginary Schwarzian
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 345-353.

Voir la notice de l'article provenant de la source Journal.fi

We study geometric aspects of the imaginary Schwarzian $S_2f$ for curves in 3-space, as introduced by Ahlfors in [1]. We show that $S_2f$ points in the direction from the center of the osculating sphere to the point of contact with the curve. We also establish an important law of transformation of $S_2f$ under Möbius transformations. We finally study questions of existence and uniqueness up to Möbius transformations of curves with given real and imaginary Schwarzians. We show that curves with the same generic imaginary Schwarzian are equal provided they agree to second order at one point, while prescribing in addition the real Schwarzian becomes an overdetermined problem.
Keywords: Ahlfors' Schwarzian for curves, imaginary Schwarzian, osculating sphere, Möbius transformation, overdetermined problem

Martin Chuaqui 1

1 Pontificia Universidad Católica de Chile, Facultad de Matemáticas
@article{AFM_2021_46_1_a18,
     author = {Martin Chuaqui},
     title = {On {Ahlfors'} imaginary {Schwarzian}},
     journal = {Annales Fennici Mathematici},
     pages = {345--353},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a18/}
}
TY  - JOUR
AU  - Martin Chuaqui
TI  - On Ahlfors' imaginary Schwarzian
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 345
EP  - 353
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a18/
LA  - en
ID  - AFM_2021_46_1_a18
ER  - 
%0 Journal Article
%A Martin Chuaqui
%T On Ahlfors' imaginary Schwarzian
%J Annales Fennici Mathematici
%D 2021
%P 345-353
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a18/
%G en
%F AFM_2021_46_1_a18
Martin Chuaqui. On Ahlfors' imaginary Schwarzian. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 345-353. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a18/