Existence and multiplicity of solutions for a Kirchhoff system with critical growth
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 295-308
Voir la notice de l'article provenant de la source Journal.fi
We consider the system \[\begin{cases}-m\left(\|u\|^2\right)\Delta u = \lambda F_u(x,u,v)+\frac{1}{2^*}G_u(u,v), &in\ \Omega,\\ -l\left(\|v\|^2\right)\Delta v = \lambda F_v(x,u,v)+\frac{1}{2^*}G_v(u,v), &in\ \Omega,\\ u,v\in H_0^1(\Omega),\end{cases}\] where $\Omega\subset\mathbf{R}^N$, $N\ge 3$, is a bounded smooth domain, $\|\cdot \|^2 = \int_{\Omega}|\nabla \cdot|^2 \,\mathrm{d}x$, $\lambda>0$ is a parameter, the functions $m$ and $l$ are positive and increasing, the function $F$ is superlinear both at origin and at infinity, the function $G$ is $2^*$-homogeneous. In our first result, we obtain a nonzero nonnegative solution for large values of $\lambda$. We also prove that, for any $k\in\mathbf{N}$, there exists $\lambda^*_k>0$ such that the problem has at least $k$ pairs of nonzero solutions if $\lambda\ge\lambda_k^*$.
Keywords:
Kirchhoff-type problems, multiple solutions, critical nonlinearities
Affiliations des auteurs :
Marcelo F. Furtado 1 ; Luan D. de Oliveira 1 ; João Pablo P. da Silva 2
@article{AFM_2021_46_1_a15,
author = {Marcelo F. Furtado and Luan D. de Oliveira and Jo\~ao Pablo P. da Silva},
title = {Existence and multiplicity of solutions for a {Kirchhoff} system with critical growth},
journal = {Annales Fennici Mathematici},
pages = {295--308},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a15/}
}
TY - JOUR AU - Marcelo F. Furtado AU - Luan D. de Oliveira AU - João Pablo P. da Silva TI - Existence and multiplicity of solutions for a Kirchhoff system with critical growth JO - Annales Fennici Mathematici PY - 2021 SP - 295 EP - 308 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a15/ LA - en ID - AFM_2021_46_1_a15 ER -
%0 Journal Article %A Marcelo F. Furtado %A Luan D. de Oliveira %A João Pablo P. da Silva %T Existence and multiplicity of solutions for a Kirchhoff system with critical growth %J Annales Fennici Mathematici %D 2021 %P 295-308 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a15/ %G en %F AFM_2021_46_1_a15
Marcelo F. Furtado; Luan D. de Oliveira; João Pablo P. da Silva. Existence and multiplicity of solutions for a Kirchhoff system with critical growth. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 295-308. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a15/