Zeros, growth and Taylor coefficients of entire solutions of linear q-difference equations
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 249-277
Voir la notice de l'article provenant de la source Journal.fi
We consider transcendental entire solutions of linear $q$-difference equations with polynomial coefficients and determine the asymptotic behavior of their Taylor coefficients. We use this to show that under a suitable hypothesis on the associated Newton-Puiseux diagram their zeros are asymptotic to finitely many geometric progressions. We also sharpen previous results on the growth rate of entire solutions.
Keywords:
Difference equation, q-difference equation, entire function, maximum modulus, growth, zeros, Taylor series, Newton-Puiseux diagram
Affiliations des auteurs :
Walter Bergweiler 1
@article{AFM_2021_46_1_a13,
author = {Walter Bergweiler},
title = {Zeros, growth and {Taylor} coefficients of entire solutions of linear q-difference equations},
journal = {Annales Fennici Mathematici},
pages = {249--277},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/}
}
TY - JOUR AU - Walter Bergweiler TI - Zeros, growth and Taylor coefficients of entire solutions of linear q-difference equations JO - Annales Fennici Mathematici PY - 2021 SP - 249 EP - 277 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/ LA - en ID - AFM_2021_46_1_a13 ER -
Walter Bergweiler. Zeros, growth and Taylor coefficients of entire solutions of linear q-difference equations. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 249-277. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/