Zeros, growth and Taylor coefficients of entire solutions of linear q-difference equations
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 249-277.

Voir la notice de l'article provenant de la source Journal.fi

We consider transcendental entire solutions of linear $q$-difference equations with polynomial coefficients and determine the asymptotic behavior of their Taylor coefficients. We use this to show that under a suitable hypothesis on the associated Newton-Puiseux diagram their zeros are asymptotic to finitely many geometric progressions. We also sharpen previous results on the growth rate of entire solutions.
Keywords: Difference equation, q-difference equation, entire function, maximum modulus, growth, zeros, Taylor series, Newton-Puiseux diagram

Walter Bergweiler 1

1 Christian-Albrechts-Universität zu Kiel, Mathematisches Seminar
@article{AFM_2021_46_1_a13,
     author = {Walter Bergweiler},
     title = {Zeros, growth and {Taylor} coefficients of entire solutions of  linear q-difference equations},
     journal = {Annales Fennici Mathematici},
     pages = {249--277},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/}
}
TY  - JOUR
AU  - Walter Bergweiler
TI  - Zeros, growth and Taylor coefficients of entire solutions of  linear q-difference equations
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 249
EP  - 277
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/
LA  - en
ID  - AFM_2021_46_1_a13
ER  - 
%0 Journal Article
%A Walter Bergweiler
%T Zeros, growth and Taylor coefficients of entire solutions of  linear q-difference equations
%J Annales Fennici Mathematici
%D 2021
%P 249-277
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/
%G en
%F AFM_2021_46_1_a13
Walter Bergweiler. Zeros, growth and Taylor coefficients of entire solutions of  linear q-difference equations. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 249-277. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a13/