We derive a formula for the number of pre-images under a non-degenerate harmonic mapping $f$, using the argument principle. This formula reveals a connection between the pre-images and the caustics. Our results allow to deduce the number of pre-images under $f$ geometrically for every non-caustic point. We approximately locate the pre-images of points near the caustics. Moreover, we apply our results to prove that for every $k = n, n+1, \ldots, n^2$ there exists a harmonic polynomial of degree $n$ with $k$ zeros.
@article{AFM_2021_46_1_a12,
author = {Olivier S\`ete and Jan Zur},
title = {Number and location of pre-images under harmonic mappings in the plane},
journal = {Annales Fennici Mathematici},
pages = {225--247},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/}
}
TY - JOUR
AU - Olivier Sète
AU - Jan Zur
TI - Number and location of pre-images under harmonic mappings in the plane
JO - Annales Fennici Mathematici
PY - 2021
SP - 225
EP - 247
VL - 46
IS - 1
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/
LA - en
ID - AFM_2021_46_1_a12
ER -
%0 Journal Article
%A Olivier Sète
%A Jan Zur
%T Number and location of pre-images under harmonic mappings in the plane
%J Annales Fennici Mathematici
%D 2021
%P 225-247
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/
%G en
%F AFM_2021_46_1_a12
Olivier Sète; Jan Zur. Number and location of pre-images under harmonic mappings in the plane. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 225-247. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/