Number and location of pre-images under harmonic mappings in the plane
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 225-247.

Voir la notice de l'article provenant de la source Journal.fi

  We derive a formula for the number of pre-images under a non-degenerate harmonic mapping $f$, using the argument principle. This formula reveals a connection between the pre-images and the caustics. Our results allow to deduce the number of pre-images under $f$ geometrically for every non-caustic point. We approximately locate the pre-images of points near the caustics. Moreover, we apply our results to prove that for every $k = n, n+1, \ldots, n^2$ there exists a harmonic polynomial of degree $n$ with $k$ zeros.
Keywords: harmonic mappings, pre-images, caustics, argument principle, valence, zeros of harmonic polynomials

Olivier Sète 1 ; Jan Zur 1

1 TU Berlin, Department of Mathematics, MA 3-3
@article{AFM_2021_46_1_a12,
     author = {Olivier S\`ete and Jan Zur},
     title = {Number and location of pre-images under harmonic mappings in the plane},
     journal = {Annales Fennici Mathematici},
     pages = {225--247},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/}
}
TY  - JOUR
AU  - Olivier Sète
AU  - Jan Zur
TI  - Number and location of pre-images under harmonic mappings in the plane
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 225
EP  - 247
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/
LA  - en
ID  - AFM_2021_46_1_a12
ER  - 
%0 Journal Article
%A Olivier Sète
%A Jan Zur
%T Number and location of pre-images under harmonic mappings in the plane
%J Annales Fennici Mathematici
%D 2021
%P 225-247
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/
%G en
%F AFM_2021_46_1_a12
Olivier Sète; Jan Zur. Number and location of pre-images under harmonic mappings in the plane. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 225-247. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a12/