L^2-bounded singular integrals on a purely unrectifiable set in R^d
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 187-200
Voir la notice de l'article provenant de la source Journal.fi
We construct an example of a purely unrectifiable measure $\mu$ in $\mathbf{R}^d$ for which the singular integrals associated to the kernels $K(x)=P_{2k+1}(x)/|x|^{2k+d}$, with $k\geq 1$ and $P_{2k+1}$ a homogeneous harmonic polynomial of degree $2k+1$, are bounded in $L^2(\mu)$. This contrasts starkly with the results concerning the Riesz kernel $x/|x|^d$ in $\mathbf{R}^d$.
Keywords:
Purely unrectifiable set, singular integral operator, Cantor type set, T(1)-theorem
Affiliations des auteurs :
Joan Mateu 1 ; Laura Prat 1
@article{AFM_2021_46_1_a10,
author = {Joan Mateu and Laura Prat},
title = {L^2-bounded singular integrals on a purely unrectifiable set in {R^d}},
journal = {Annales Fennici Mathematici},
pages = {187--200},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/}
}
Joan Mateu; Laura Prat. L^2-bounded singular integrals on a purely unrectifiable set in R^d. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/