L^2-bounded singular integrals on a purely unrectifiable set in R^d
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 187-200.

Voir la notice de l'article provenant de la source Journal.fi

We construct an example of a purely unrectifiable measure $\mu$ in $\mathbf{R}^d$ for which the singular integrals associated to the kernels $K(x)=P_{2k+1}(x)/|x|^{2k+d}$, with $k\geq 1$ and $P_{2k+1}$ a homogeneous harmonic polynomial of degree $2k+1$, are bounded in $L^2(\mu)$. This contrasts starkly with the results concerning the Riesz kernel $x/|x|^d$ in $\mathbf{R}^d$.
Keywords: Purely unrectifiable set, singular integral operator, Cantor type set, T(1)-theorem

Joan Mateu 1 ; Laura Prat 1

1 Universitat Autònoma de Barcelona, Departament de Matemàtiques and Centre de Reserca Matemàtica
@article{AFM_2021_46_1_a10,
     author = {Joan Mateu and Laura Prat},
     title = {L^2-bounded singular integrals on a purely unrectifiable set in {R^d}},
     journal = {Annales Fennici Mathematici},
     pages = {187--200},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/}
}
TY  - JOUR
AU  - Joan Mateu
AU  - Laura Prat
TI  - L^2-bounded singular integrals on a purely unrectifiable set in R^d
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 187
EP  - 200
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/
LA  - en
ID  - AFM_2021_46_1_a10
ER  - 
%0 Journal Article
%A Joan Mateu
%A Laura Prat
%T L^2-bounded singular integrals on a purely unrectifiable set in R^d
%J Annales Fennici Mathematici
%D 2021
%P 187-200
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/
%G en
%F AFM_2021_46_1_a10
Joan Mateu; Laura Prat. L^2-bounded singular integrals on a purely unrectifiable set in R^d. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a10/