Duality of moduli in regular toroidal metric spaces
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Journal.fi

We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala [12] on the corresponding duality in condensers.
Keywords: duality, modulus, torus, metric spaces

Atte Lohvansuu 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2021_46_1_a0,
     author = {Atte Lohvansuu},
     title = {Duality of moduli in regular toroidal metric spaces},
     journal = {Annales Fennici Mathematici},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a0/}
}
TY  - JOUR
AU  - Atte Lohvansuu
TI  - Duality of moduli in regular toroidal metric spaces
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 3
EP  - 20
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a0/
LA  - en
ID  - AFM_2021_46_1_a0
ER  - 
%0 Journal Article
%A Atte Lohvansuu
%T Duality of moduli in regular toroidal metric spaces
%J Annales Fennici Mathematici
%D 2021
%P 3-20
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a0/
%G en
%F AFM_2021_46_1_a0
Atte Lohvansuu. Duality of moduli in regular toroidal metric spaces. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a0/