Ramsey multiplicity and the Turán coloring
Advances in Combinatronics (2023)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

Extending an earlier conjecture of Erd\H{o}s, Burr and Rosta conjectured that among all two-colorings of the edges of a complete graph, the uniformly random coloring asymptotically minimizes the number of monochromatic copies of any fixed graph $H$. This conjecture was disproved independently by Sidorenko and Thomason. The first author later found quantitatively stronger counterexamples, using the Tur\'an coloring, in which one of the two colors spans a balanced complete multipartite graph. We prove that the Tur\'an coloring is extremal for an infinite family of graphs, and that it is the unique extremal coloring. This yields the first determination of the Ramsey multiplicity constant of a graph for which the Burr--Rosta conjecture fails. We also prove an analogous three-color result. In this case, our result is conditional on a certain natural conjecture on the behavior of two-color Ramsey numbers.
Publié le :
@article{ADVC_2023_a5,
     author = {Jacob Fox and Yuval Wigderson},
     title = {Ramsey multiplicity and the {Tur\'an} coloring},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2023_a5/}
}
TY  - JOUR
AU  - Jacob Fox
AU  - Yuval Wigderson
TI  - Ramsey multiplicity and the Turán coloring
JO  - Advances in Combinatronics
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2023_a5/
LA  - en
ID  - ADVC_2023_a5
ER  - 
%0 Journal Article
%A Jacob Fox
%A Yuval Wigderson
%T Ramsey multiplicity and the Turán coloring
%J Advances in Combinatronics
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2023_a5/
%G en
%F ADVC_2023_a5
Jacob Fox; Yuval Wigderson. Ramsey multiplicity and the Turán coloring. Advances in Combinatronics (2023). http://geodesic.mathdoc.fr/item/ADVC_2023_a5/