Box and segment intersection graphs with large girth and chromatic number
Advances in Combinatronics (2021)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove that there are intersection graphs of axis-aligned boxes in $\mathbb{R}^3$ and intersection graphs of straight lines in $\mathbb{R}^3$ that have arbitrarily large girth and chromatic number.
Publié le :
@article{ADVC_2021_a2,
     author = {James Davies},
     title = {Box and segment intersection graphs with large girth and chromatic
  number},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a2/}
}
TY  - JOUR
AU  - James Davies
TI  - Box and segment intersection graphs with large girth and chromatic
  number
JO  - Advances in Combinatronics
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2021_a2/
LA  - en
ID  - ADVC_2021_a2
ER  - 
%0 Journal Article
%A James Davies
%T Box and segment intersection graphs with large girth and chromatic
  number
%J Advances in Combinatronics
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2021_a2/
%G en
%F ADVC_2021_a2
James Davies. Box and segment intersection graphs with large girth and chromatic
  number. Advances in Combinatronics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a2/