Box and segment intersection graphs with large girth and chromatic number
Advances in Combinatorics (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove that there are intersection graphs of axis-aligned boxes in $\mathbb{R}^3$ and intersection graphs of straight lines in $\mathbb{R}^3$ that have arbitrarily large girth and chromatic number.
Publié le :
@article{ADVC_2021_a2,
     author = {James Davies},
     title = {Box and segment intersection graphs with large girth and chromatic number},
     journal = {Advances in Combinatorics},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a2/}
}
TY  - JOUR
AU  - James Davies
TI  - Box and segment intersection graphs with large girth and chromatic number
JO  - Advances in Combinatorics
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/ADVC_2021_a2/
LA  - en
ID  - ADVC_2021_a2
ER  - 
%0 Journal Article
%A James Davies
%T Box and segment intersection graphs with large girth and chromatic number
%J Advances in Combinatorics
%D 2021
%U http://geodesic.mathdoc.fr/item/ADVC_2021_a2/
%G en
%F ADVC_2021_a2
James Davies. Box and segment intersection graphs with large girth and chromatic number. Advances in Combinatorics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a2/