Tight paths in convex geometric hypergraphs
Advances in Combinatronics (2020)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

In this paper, we prove a theorem on tight paths in convex geometric hypergraphs, which is asymptotically sharp in infinitely many cases. Our geometric theorem is a common generalization of early results of Hopf and Pannwitz [12], Sutherland [19], Kupitz and Perles [16] for convex geometric graphs, as well as the classical Erd\H{o}s-Gallai Theorem [6] for graphs. As a consequence, we obtain the first substantial improvement on the Tur\'an problem for tight paths in uniform hypergraphs.
Publié le :
@article{ADVC_2020_a9,
     author = {Zolt\'an F\" uredi and Tao Jiang and Alexandr Kostochka and Dhruv Mubayi and Jacques Verstra\"ete},
     title = {Tight paths in convex geometric hypergraphs},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2020_a9/}
}
TY  - JOUR
AU  - Zoltán F\" uredi
AU  - Tao Jiang
AU  - Alexandr Kostochka
AU  - Dhruv Mubayi
AU  - Jacques Verstraëte
TI  - Tight paths in convex geometric hypergraphs
JO  - Advances in Combinatronics
PY  - 2020
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2020_a9/
LA  - en
ID  - ADVC_2020_a9
ER  - 
%0 Journal Article
%A Zoltán F\" uredi
%A Tao Jiang
%A Alexandr Kostochka
%A Dhruv Mubayi
%A Jacques Verstraëte
%T Tight paths in convex geometric hypergraphs
%J Advances in Combinatronics
%D 2020
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2020_a9/
%G en
%F ADVC_2020_a9
Zoltán F\" uredi; Tao Jiang; Alexandr Kostochka; Dhruv Mubayi; Jacques Verstraëte. Tight paths in convex geometric hypergraphs. Advances in Combinatronics (2020). http://geodesic.mathdoc.fr/item/ADVC_2020_a9/