Planar graphs have bounded nonrepetitive chromatic number
Advances in Combinatronics (2020)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
A colouring of a graph is "nonrepetitive" if for every path of even order,
the sequence of colours on the first half of the path is different from the
sequence of colours on the second half. We show that planar graphs have
nonrepetitive colourings with a bounded number of colours, thus proving a
conjecture of Alon, Grytczuk, Haluszczak and Riordan (2002). We also generalise
this result for graphs of bounded Euler genus, graphs excluding a fixed minor,
and graphs excluding a fixed topological minor.
Publié le :
@article{ADVC_2020_a6,
author = {Vida Dujmovi\'c and Louis Esperet and Gwena\"el Joret and Bartosz Walczak and David R. Wood},
title = {Planar graphs have bounded nonrepetitive chromatic number},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2020_a6/}
}
TY - JOUR AU - Vida Dujmović AU - Louis Esperet AU - Gwenaël Joret AU - Bartosz Walczak AU - David R. Wood TI - Planar graphs have bounded nonrepetitive chromatic number JO - Advances in Combinatronics PY - 2020 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADVC_2020_a6/ LA - en ID - ADVC_2020_a6 ER -
Vida Dujmović; Louis Esperet; Gwenaël Joret; Bartosz Walczak; David R. Wood. Planar graphs have bounded nonrepetitive chromatic number. Advances in Combinatronics (2020). http://geodesic.mathdoc.fr/item/ADVC_2020_a6/