Graphs of bounded cliquewidth are polynomially $χ$-bounded
Advances in Combinatronics (2020)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove that if $\mathcal{C}$ is a hereditary class of graphs that is polynomially $\chi$-bounded, then the class of graphs that admit decompositions into pieces belonging to $\mathcal{C}$ along cuts of bounded rank is also polynomially $\chi$-bounded. In particular, this implies that for every positive integer $k$, the class of graphs of cliquewidth at most $k$ is polynomially $\chi$-bounded.
Publié le :
@article{ADVC_2020_a3,
     author = {Marthe Bonamy and Micha{\l} Pilipczuk},
     title = {Graphs of bounded cliquewidth are polynomially $\ensuremath{\chi}$-bounded},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2020_a3/}
}
TY  - JOUR
AU  - Marthe Bonamy
AU  - Michał Pilipczuk
TI  - Graphs of bounded cliquewidth are polynomially $χ$-bounded
JO  - Advances in Combinatronics
PY  - 2020
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2020_a3/
LA  - en
ID  - ADVC_2020_a3
ER  - 
%0 Journal Article
%A Marthe Bonamy
%A Michał Pilipczuk
%T Graphs of bounded cliquewidth are polynomially $χ$-bounded
%J Advances in Combinatronics
%D 2020
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2020_a3/
%G en
%F ADVC_2020_a3
Marthe Bonamy; Michał Pilipczuk. Graphs of bounded cliquewidth are polynomially $χ$-bounded. Advances in Combinatronics (2020). http://geodesic.mathdoc.fr/item/ADVC_2020_a3/