The Maximum Number of Triangles in a Graph of Given Maximum Degree
Advances in Combinatronics (2020)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove that any graph on $n$ vertices with max degree $d$ has at most $q{d+1 \choose 3}+{r \choose 3}$ triangles, where $n = q(d+1)+r$, $0 \le r \le d$. This resolves a conjecture of Gan-Loh-Sudakov.
Publié le :
@article{ADVC_2020_a1,
     author = {Zachary Chase},
     title = {The {Maximum} {Number} of {Triangles} in a {Graph} of {Given} {Maximum} {Degree}},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2020_a1/}
}
TY  - JOUR
AU  - Zachary Chase
TI  - The Maximum Number of Triangles in a Graph of Given Maximum Degree
JO  - Advances in Combinatronics
PY  - 2020
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2020_a1/
LA  - en
ID  - ADVC_2020_a1
ER  - 
%0 Journal Article
%A Zachary Chase
%T The Maximum Number of Triangles in a Graph of Given Maximum Degree
%J Advances in Combinatronics
%D 2020
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2020_a1/
%G en
%F ADVC_2020_a1
Zachary Chase. The Maximum Number of Triangles in a Graph of Given Maximum Degree. Advances in Combinatronics (2020). http://geodesic.mathdoc.fr/item/ADVC_2020_a1/