The structure of binary matroids with no induced claw or Fano plane restriction
Advances in Combinatorics (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

An 'induced restriction' of a simple binary matroid $M$ is a restriction $M|F$, where $F$ is a flat of $M$. We consider the class $\mathcal{M}$ of all simple binary matroids $M$ containing neither a free matroid on three elements (which we call a 'claw'), nor a Fano plane as an induced restriction. We give an exact structure theorem for this class; two of its consequences are that the matroids in $\mathcal{M}$ have unbounded critical number, while the matroids in $\mathcal{M}$ not containing the clique $M(K_5)$ as an induced restriction have critical number at most $2$.
Publié le :
@article{ADVC_2019_a4,
     author = {Marthe Bonamy and Frantisek Kardos and Tom Kelly and Peter Nelson and Luke Postle},
     title = {The structure of binary matroids with no induced claw or {Fano} plane restriction},
     journal = {Advances in Combinatorics},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a4/}
}
TY  - JOUR
AU  - Marthe Bonamy
AU  - Frantisek Kardos
AU  - Tom Kelly
AU  - Peter Nelson
AU  - Luke Postle
TI  - The structure of binary matroids with no induced claw or Fano plane restriction
JO  - Advances in Combinatorics
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/ADVC_2019_a4/
LA  - en
ID  - ADVC_2019_a4
ER  - 
%0 Journal Article
%A Marthe Bonamy
%A Frantisek Kardos
%A Tom Kelly
%A Peter Nelson
%A Luke Postle
%T The structure of binary matroids with no induced claw or Fano plane restriction
%J Advances in Combinatorics
%D 2019
%U http://geodesic.mathdoc.fr/item/ADVC_2019_a4/
%G en
%F ADVC_2019_a4
Marthe Bonamy; Frantisek Kardos; Tom Kelly; Peter Nelson; Luke Postle. The structure of binary matroids with no induced claw or Fano plane restriction. Advances in Combinatorics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a4/