The structure of binary matroids with no induced claw or Fano plane
restriction
Advances in Combinatronics (2019)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
An 'induced restriction' of a simple binary matroid $M$ is a restriction
$M|F$, where $F$ is a flat of $M$. We consider the class $\mathcal{M}$ of all
simple binary matroids $M$ containing neither a free matroid on three elements
(which we call a 'claw'), nor a Fano plane as an induced restriction. We give
an exact structure theorem for this class; two of its consequences are that the
matroids in $\mathcal{M}$ have unbounded critical number, while the matroids in
$\mathcal{M}$ not containing the clique $M(K_5)$ as an induced restriction have
critical number at most $2$.
Publié le :
@article{ADVC_2019_a4,
author = {Marthe Bonamy and Frantisek Kardos and Tom Kelly and Peter Nelson and Luke Postle},
title = {The structure of binary matroids with no induced claw or {Fano} plane
restriction},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a4/}
}
TY - JOUR AU - Marthe Bonamy AU - Frantisek Kardos AU - Tom Kelly AU - Peter Nelson AU - Luke Postle TI - The structure of binary matroids with no induced claw or Fano plane restriction JO - Advances in Combinatronics PY - 2019 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADVC_2019_a4/ LA - en ID - ADVC_2019_a4 ER -
%0 Journal Article %A Marthe Bonamy %A Frantisek Kardos %A Tom Kelly %A Peter Nelson %A Luke Postle %T The structure of binary matroids with no induced claw or Fano plane restriction %J Advances in Combinatronics %D 2019 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADVC_2019_a4/ %G en %F ADVC_2019_a4
Marthe Bonamy; Frantisek Kardos; Tom Kelly; Peter Nelson; Luke Postle. The structure of binary matroids with no induced claw or Fano plane restriction. Advances in Combinatronics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a4/