Upper density of monochromatic infinite paths
Advances in Combinatronics (2019)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove that in every $2$-colouring of the edges of $K_\mathbb{N}$ there exists a monochromatic infinite path $P$ such that $V(P)$ has upper density at least ${(12+\sqrt{8})}/{17} \approx 0.87226$ and further show that this is best possible. This settles a problem of Erd\H{o}s and Galvin.
Publié le :
@article{ADVC_2019_a1,
     author = {Jan Corsten and Louis DeBiasio and Ander Lamaison and Richard Lang},
     title = {Upper density of monochromatic infinite paths},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a1/}
}
TY  - JOUR
AU  - Jan Corsten
AU  - Louis DeBiasio
AU  - Ander Lamaison
AU  - Richard Lang
TI  - Upper density of monochromatic infinite paths
JO  - Advances in Combinatronics
PY  - 2019
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2019_a1/
LA  - en
ID  - ADVC_2019_a1
ER  - 
%0 Journal Article
%A Jan Corsten
%A Louis DeBiasio
%A Ander Lamaison
%A Richard Lang
%T Upper density of monochromatic infinite paths
%J Advances in Combinatronics
%D 2019
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2019_a1/
%G en
%F ADVC_2019_a1
Jan Corsten; Louis DeBiasio; Ander Lamaison; Richard Lang. Upper density of monochromatic infinite paths. Advances in Combinatronics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a1/