Upper density of monochromatic infinite paths
Advances in Combinatorics (2019)
Cet article a éte moissonné depuis la source Scholastica
We prove that in every $2$-colouring of the edges of $K_\mathbb{N}$ there exists a monochromatic infinite path $P$ such that $V(P)$ has upper density at least ${(12+\sqrt{8})}/{17} \approx 0.87226$ and further show that this is best possible. This settles a problem of Erdős and Galvin.
@article{ADVC_2019_a1,
author = {Jan Corsten and Louis DeBiasio and Ander Lamaison and Richard Lang},
title = {Upper density of monochromatic infinite paths},
journal = {Advances in Combinatorics},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a1/}
}
Jan Corsten; Louis DeBiasio; Ander Lamaison; Richard Lang. Upper density of monochromatic infinite paths. Advances in Combinatorics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a1/