On certain semigroups of contraction mappings of a~finite chain
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 299-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $[n]=\{1,2,\dots,n\}$ be a finite chain and let $\mathcal{P}_{n}$ (resp., $\mathcal{T}_{n}$) be the semigroup of partial transformations on $[n]$ (resp., full transformations on $[n]$). Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}\colon (\text{for all }x,y\in \operatorname{Dom}\alpha)\ |x\alpha-y\alpha|\leq|x-y|\}$ (resp., $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}\colon (\text{for all }x,y\in [n])\ |x\alpha-y\alpha|\leq|x-y|\}$) be the subsemigroup of partial contraction mappings on $[n]$ (resp., subsemigroup of full contraction mappings on $[n]$). We characterize all the starred Green's relations on $\mathcal{CP}_{n}$ and it subsemigroup of order preserving and/or order reversing and subsemigroup of order preserving partial contractions on $[n]$, respectively. We show that the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$, and some of their subsemigroups are left abundant semigroups for all $n$ but not right abundant for $n\geq 4$. We further show that the set of regular elements of the semigroup $\mathcal{CT}_{n}$ and its subsemigroup of order preserving or order reversing full contractions on $[n]$, each forms a regular subsemigroup and an orthodox semigroup, respectively.
Keywords: starred Green's relations, orthodox semigroups, quasi-adequate semigroups, regularity.
@article{ADM_2021_32_2_a10,
     author = {A. Umar},
     title = {On certain semigroups of contraction mappings of a~finite chain},
     journal = {Algebra and discrete mathematics},
     pages = {299--320},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/}
}
TY  - JOUR
AU  - A. Umar
TI  - On certain semigroups of contraction mappings of a~finite chain
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 299
EP  - 320
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/
LA  - en
ID  - ADM_2021_32_2_a10
ER  - 
%0 Journal Article
%A A. Umar
%T On certain semigroups of contraction mappings of a~finite chain
%J Algebra and discrete mathematics
%D 2021
%P 299-320
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/
%G en
%F ADM_2021_32_2_a10
A. Umar. On certain semigroups of contraction mappings of a~finite chain. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 299-320. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/

[1] A. El-Qallali, Structure theory for abundant and related semigroups, D.Phil. thesis, University of York, 1980

[2] A. El-Qallali and J. B. Fountain, “Quasi-adequate semigroups”, Proc. Roy. Soc. Edinb., 91A (1981), 91–99 | DOI | MR | Zbl

[3] A. H. Cliffoid and G. B. Preston, The algebraic theory of semigroups, v. 1, Math. Surveys of the American Math. Soc., 7, 1961 | MR

[4] A. Umar, “On the semigroups of order-decreasing finite full transformations”, Proc. Roy. Soc. Edinb. Sect. A, 120:1–2 (1992), 129–142 | DOI | MR | Zbl

[5] A. Umar, “On the semigroups of partial one-one order-decreasing finite transformations”, Proc. Roy. Soc. Edinb. Sect. A, 123 (1993), 355–363 | DOI | MR | Zbl

[6] A. Umar, “On certain infinite semigroups of order-decreasing transformations, I”, Comm. Algebra, 25 (1997), 2989–2999 | MR

[7] A. Umar, “On certain infinite semigroups of order-increasing transformations, II”, Arab. J. Sci. Eng. Sect. A Sci., 28 (2003), 203–210 | MR

[8] A. Umar, “A class of quasi-adequate transformation semigroups”, Port. Mathematica, 51:4 (1994), 553–570 | MR | Zbl

[9] A. Umar and F. Al-Kharousi, Studies in semigroup of contraction mappings of a finite chain, The Research Council of Oman, Research grant proposal No. ORG/CBS/12/007, 6th March 2012

[10] A. Umar and M. M. Zubairu, On certain semigroups of full contractions of a finite chain, arXiv: 1804.10057v1 | MR

[11] A. D. Adeshola and A. Umar, “Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain”, JCMCC, 106 (2018), 37–49 | MR | Zbl

[12] B. Ali, A. Umar and M. M. Zubairu, Regularity and Green's relations on the semigroup of partial contractions of a finite chain, arXiv: 1803.02146v1 | MR

[13] B. Ali, A. Umar and M. M. Zubairu, Regularity and Green's relations on the semigroup of partial and full contractions of a finite chain, submitted | MR

[14] F. AlKharousi, G. U. Garba, M. J. Ibrahim, A. T. Imam and A. Umar, On the semigroup of finite order-preserving partial injective contraction mappings, submitted

[15] G. U. Garba, M. J. Ibrahim and A. T. Imam, “On certain semigroups of full contraction maps of a finite chain”, Turk. J. Math., 41 (2017), 500–507 | DOI | MR | Zbl

[16] H. S. Pei and H. Zhou, “Abundant semigroups of transformations preserving an equivalence relation”, Algebra Colloq., 18:1 (2011), 77–82 | DOI | MR | Zbl

[17] J. B. Fountain, “Adequate Semigroups”, Proc. Edinb. Math. Soc., 22 (1979), 113–125 | DOI | MR | Zbl

[18] J. B. Fountain, “Abundant Semigroups”, Proc. Lond. Math. Soc., 44 (1982), 103–129 | DOI | MR | Zbl

[19] J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society, New series, 12, The Clarendon Press, Oxford University Press, 1995 | MR

[20] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976 | MR | Zbl

[21] J. M. Howie, E. F. Robertson and B. M. Schein, “A combinatorial property of finite full transformation semigroups”, Proc. Roy. Soc. Edinb., 109A (1988), 319–328 | DOI | MR | Zbl

[22] J. M. Howie, “The subsemigroup generated by the idempotents of a full transformation semigroup”, J. Lond. Math. Soc., 41 (1966), 707–716 | DOI | MR | Zbl

[23] L. Sun, “A note on abundance of certain semigroups of transformations with restricted range”, Semigroup Forum, 87:3 (2013), 681–684 | DOI | MR | Zbl

[24] M. V. Lawson, The structure theory of abundant semigroups, D.Phil. thesis, University of York, 1985 | MR | Zbl

[25] M. V. Lawson, “Rees matrix semigroups”, Proc. Edinburgh Math. Soc. (2), 33:1 (1990), 23–37 | DOI | MR | Zbl

[26] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Algebra and Applications, 9, Springer-Verlag, London, 2009 | DOI | MR | Zbl

[27] P. M. Higgins, Techniques of semigroup theory, Oxford university Press, 1992 | MR | Zbl

[28] P. M. Higgins, J. M. Howie, J. D. Mitchell and N. Rus̆kuc, “Countable versus uncountable ranks in infinite semigroups of transformations and relations”, Proc. Edinb. Math. Soc., 46 (2003), 531–544 | DOI | MR | Zbl

[29] P. S. Venkatesan, “On right unipotent semigroups”, Pacific J. Math., 63 (1976), 555–561 | DOI | MR | Zbl

[30] P. Zhao, “On the semigroups of order-preserving and A-decreasing finite transformations”, Algebra Colloq., 21:4 (2014), 653–662 | DOI | MR | Zbl

[31] P. Zhao and M. Yang, “Regularity and Green's relations on semigroups of transformation preserving order and compression”, Bull. Korean Math. Soc., 49:5 (2012), 1015–1025 | DOI | MR | Zbl

[32] S. Mendes-Gonçalves, “Green's relations, regularity and abundancy for semigroups of quasi-onto transformations”, Semigroup Forum, 91:1 (2015), 39–52 | DOI | MR | Zbl

[33] S. M. Armstrong, The Structure of Concordant Semigroups, D. Phil. thesis, University of York, 1985 | MR

[34] S. M. Armstrong, “Structure of Concordant Semigroups”, Journal of Algebra, 118 (1988), 205–260 | DOI | MR | Zbl

[35] T. E. Hall, “Some properties of local subsemigroups inherited by larger subsemigroups”, Semigroup Forum, 1982, 35–49 | DOI | MR

[36] T. E. Hall, “Orthodox semigroups”, Pacific J. Math., 39 (1971), 677–686 | DOI | MR | Zbl

[37] V. Gould, Semigroups of Quotients, D.Phil. thesis, University of York, 1986 | Zbl