On certain semigroups of contraction mappings of a~finite chain
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 299-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $[n]=\{1,2,\dots,n\}$ be a finite chain and let $\mathcal{P}_{n}$ (resp., $\mathcal{T}_{n}$) be the semigroup of partial transformations on $[n]$ (resp., full transformations on $[n]$). Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}\colon (\text{for all }x,y\in \operatorname{Dom}\alpha)\ |x\alpha-y\alpha|\leq|x-y|\}$ (resp., $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}\colon (\text{for all }x,y\in [n])\ |x\alpha-y\alpha|\leq|x-y|\}$) be the subsemigroup of partial contraction mappings on $[n]$ (resp., subsemigroup of full contraction mappings on $[n]$). We characterize all the starred Green's relations on $\mathcal{CP}_{n}$ and it subsemigroup of order preserving and/or order reversing and subsemigroup of order preserving partial contractions on $[n]$, respectively. We show that the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$, and some of their subsemigroups are left abundant semigroups for all $n$ but not right abundant for $n\geq 4$. We further show that the set of regular elements of the semigroup $\mathcal{CT}_{n}$ and its subsemigroup of order preserving or order reversing full contractions on $[n]$, each forms a regular subsemigroup and an orthodox semigroup, respectively.
Keywords: starred Green's relations, orthodox semigroups, quasi-adequate semigroups, regularity.
@article{ADM_2021_32_2_a10,
     author = {A. Umar},
     title = {On certain semigroups of contraction mappings of a~finite chain},
     journal = {Algebra and discrete mathematics},
     pages = {299--320},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/}
}
TY  - JOUR
AU  - A. Umar
TI  - On certain semigroups of contraction mappings of a~finite chain
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 299
EP  - 320
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/
LA  - en
ID  - ADM_2021_32_2_a10
ER  - 
%0 Journal Article
%A A. Umar
%T On certain semigroups of contraction mappings of a~finite chain
%J Algebra and discrete mathematics
%D 2021
%P 299-320
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/
%G en
%F ADM_2021_32_2_a10
A. Umar. On certain semigroups of contraction mappings of a~finite chain. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 299-320. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a10/