Coarse structures on groups defined by conjugations
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a group $G$, we denote by $\stackrel{\leftrightarrow}{G}$ the coarse space on $G$ endowed with the coarse structure with the base $\{\{(x,y)\in G\times G\colon y\in x^F \} \colon F \in [G]^{\omega} \}$, $x^F = \{z^{-1} xz\colon z\in F \}$. Our goal is to explore interplays between algebraic properties of $G$ and asymptotic properties of $\stackrel{\leftrightarrow}{G}$. In particular, we show that $\operatorname{asdim}\stackrel{\leftrightarrow}{G} = 0$ if and only if $G / Z_G$ is locally finite, $Z_G$ is the center of $G$. For an infinite group $G$, the coarse space of subgroups of $G$ is discrete if and only if $G$ is a Dedekind group.
Keywords: coarse structure defined by conjugations, cellularity, ultrafilter.
Mots-clés : FC-group
@article{ADM_2021_32_1_a4,
     author = {I. Protasov and K. Protasova},
     title = {Coarse structures on groups defined by conjugations},
     journal = {Algebra and discrete mathematics},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/}
}
TY  - JOUR
AU  - I. Protasov
AU  - K. Protasova
TI  - Coarse structures on groups defined by conjugations
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 65
EP  - 75
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/
LA  - en
ID  - ADM_2021_32_1_a4
ER  - 
%0 Journal Article
%A I. Protasov
%A K. Protasova
%T Coarse structures on groups defined by conjugations
%J Algebra and discrete mathematics
%D 2021
%P 65-75
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/
%G en
%F ADM_2021_32_1_a4
I. Protasov; K. Protasova. Coarse structures on groups defined by conjugations. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/

[1] R. Baer, “Situation der Untergruppen and Structure der Gruppe”, S.B. Heidelberg Acad. Wiss., 2 (1933), 12–17

[2] R. Baer, “Finiteness properties of groups”, Duke Math. J., 15 (1948), 1021–1032 | DOI | MR | Zbl

[3] T. Banakh, I. Protasov, Set-theoretical problems in Asymptology, preprint, arXiv: 2004.01979

[4] S. N. Chernikov, “Infinite layer-finite groups”, Mat. Sb., 22 (1948), 101–133 | Zbl

[5] A. G. Kurosh, Theory of Groups, Nauka, Moscow, 1967 | MR

[6] Ie. Lutsenko, I. Protasov, “Thin subsets of balleans”, Appl. Gen. Topology, 11 (2011), 89–93 | MR

[7] I. V Protasov, “Balleans of bounded geometry and $G$-spaces”, Algebra Discrete Math., 7:2 (2008), 101–108 | MR

[8] I. Protasov, “Decompositions of set-valued mappings”, Algebra Discrete Math., 30:2 (2020), 235–238 | DOI | MR | Zbl

[9] I. Protasov, “Coarse spaces, ultrafilters and dynamical systems”, Topology Proceedings, 57 (2021), 137–148 | MR | Zbl

[10] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 2003 | MR | Zbl

[11] I. Protasov, K. Protasova, “The dynamical approach to the conjugacy in groups”, Topol. Appl. | DOI | MR

[12] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007, 219 pp. | MR | Zbl

[13] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., 31, American Mathematical Society, Providence, RI, 2003 | DOI | MR | Zbl