Coarse structures on groups defined by conjugations
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 65-75

Voir la notice de l'article provenant de la source Math-Net.Ru

For a group $G$, we denote by $\stackrel{\leftrightarrow}{G}$ the coarse space on $G$ endowed with the coarse structure with the base $\{\{(x,y)\in G\times G\colon y\in x^F \} \colon F \in [G]^{\omega} \}$, $x^F = \{z^{-1} xz\colon z\in F \}$. Our goal is to explore interplays between algebraic properties of $G$ and asymptotic properties of $\stackrel{\leftrightarrow}{G}$. In particular, we show that $\operatorname{asdim}\stackrel{\leftrightarrow}{G} = 0$ if and only if $G / Z_G$ is locally finite, $Z_G$ is the center of $G$. For an infinite group $G$, the coarse space of subgroups of $G$ is discrete if and only if $G$ is a Dedekind group.
Keywords: coarse structure defined by conjugations, cellularity, ultrafilter.
Mots-clés : FC-group
@article{ADM_2021_32_1_a4,
     author = {I. Protasov and K. Protasova},
     title = {Coarse structures on groups defined by conjugations},
     journal = {Algebra and discrete mathematics},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/}
}
TY  - JOUR
AU  - I. Protasov
AU  - K. Protasova
TI  - Coarse structures on groups defined by conjugations
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 65
EP  - 75
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/
LA  - en
ID  - ADM_2021_32_1_a4
ER  - 
%0 Journal Article
%A I. Protasov
%A K. Protasova
%T Coarse structures on groups defined by conjugations
%J Algebra and discrete mathematics
%D 2021
%P 65-75
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/
%G en
%F ADM_2021_32_1_a4
I. Protasov; K. Protasova. Coarse structures on groups defined by conjugations. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a4/