Mots-clés : Laurent polynomial, filtration
@article{ADM_2021_32_1_a1,
author = {C. Choi and S. Kim and H. Seo},
title = {A filtration on the ring of {Laurent} polynomials and representations of the general linear {Lie} algebra},
journal = {Algebra and discrete mathematics},
pages = {9--32},
year = {2021},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/}
}
TY - JOUR AU - C. Choi AU - S. Kim AU - H. Seo TI - A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra JO - Algebra and discrete mathematics PY - 2021 SP - 9 EP - 32 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/ LA - en ID - ADM_2021_32_1_a1 ER -
C. Choi; S. Kim; H. Seo. A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 9-32. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/
[1] D. J. Britten and F. W. Lemire, “A classification of simple Lie modules having a $1$-dimensional weight space”, Trans. Amer. Math. Soc., 299:2 (1987), 683–697 | DOI | MR | Zbl
[2] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002 | MR | Zbl
[3] S. Eswara Rao, “Representations of Witt algebras”, Publ. Res. Inst. Math. Sci., 30:2 (1994), 191–201 | DOI | MR | Zbl
[4] S. Eswara Rao, “Irreducible representations of the Lie-algebra of the diffeomorphisms of a $d$-dimensional torus”, J. Algebra, 182:2 (1996), 401–421 | DOI | MR | Zbl
[5] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl
[6] X. Guo and K. Zhao, “Irreducible weight modules over Witt algebras”, Proc. Amer. Math. Soc., 139:7 (2011), 2367–2373 | DOI | MR | Zbl