A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 9-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We first present a filtration on the ring $L_n$ of Laurent polynomials such that the direct sum decomposition of its associated graded ring $\operatorname{gr} L_n$ agrees with the direct sum decomposition of $\operatorname{gr} L_n$, as a module over the complex general linear Lie algebra $\mathfrak{gl}(n)$, into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring $\operatorname{gr} L_n$, we give some explicit constructions of weight multiplicity-free irreducible representations of $\mathfrak{gl}(n)$.
Keywords: general linear Lie algebra, weight module.
Mots-clés : Laurent polynomial, filtration
@article{ADM_2021_32_1_a1,
     author = {C. Choi and S. Kim and H. Seo},
     title = {A filtration on the ring of {Laurent} polynomials and representations of the general linear {Lie} algebra},
     journal = {Algebra and discrete mathematics},
     pages = {9--32},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/}
}
TY  - JOUR
AU  - C. Choi
AU  - S. Kim
AU  - H. Seo
TI  - A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 9
EP  - 32
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/
LA  - en
ID  - ADM_2021_32_1_a1
ER  - 
%0 Journal Article
%A C. Choi
%A S. Kim
%A H. Seo
%T A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
%J Algebra and discrete mathematics
%D 2021
%P 9-32
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/
%G en
%F ADM_2021_32_1_a1
C. Choi; S. Kim; H. Seo. A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 9-32. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a1/

[1] D. J. Britten and F. W. Lemire, “A classification of simple Lie modules having a $1$-dimensional weight space”, Trans. Amer. Math. Soc., 299:2 (1987), 683–697 | DOI | MR | Zbl

[2] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002 | MR | Zbl

[3] S. Eswara Rao, “Representations of Witt algebras”, Publ. Res. Inst. Math. Sci., 30:2 (1994), 191–201 | DOI | MR | Zbl

[4] S. Eswara Rao, “Irreducible representations of the Lie-algebra of the diffeomorphisms of a $d$-dimensional torus”, J. Algebra, 182:2 (1996), 401–421 | DOI | MR | Zbl

[5] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl

[6] X. Guo and K. Zhao, “Irreducible weight modules over Witt algebras”, Proc. Amer. Math. Soc., 139:7 (2011), 2367–2373 | DOI | MR | Zbl