Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_2_a4, author = {J. Kesten and S. Mathers and Z. Normatov}, title = {Infinite transitivity on the {Calogero--Moser} space~$\mathcal{C}_2$}, journal = {Algebra and discrete mathematics}, pages = {227--250}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/} }
TY - JOUR AU - J. Kesten AU - S. Mathers AU - Z. Normatov TI - Infinite transitivity on the Calogero--Moser space~$\mathcal{C}_2$ JO - Algebra and discrete mathematics PY - 2021 SP - 227 EP - 250 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/ LA - en ID - ADM_2021_31_2_a4 ER -
J. Kesten; S. Mathers; Z. Normatov. Infinite transitivity on the Calogero--Moser space~$\mathcal{C}_2$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 227-250. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/
[1] Yu. Berest, A. Eshmatov, F. Eshmatov, “Multitransivity of Calogero-Moser spaces”, Transform. Groups, 21 (2016), 35–50 | DOI | MR | Zbl
[2] V. Drensky, E. Formanek, Polynomial Identity Rings, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2004 | MR | Zbl
[3] K. Kuyumzhiyan, “Infinite transitivity for Calogero-Moser spaces”, Proc. Amer. Math. Soc., 148 (2020), 3723–3731 ; arXiv: 1807.05723 | DOI | MR | Zbl
[4] G. Wilson, “Collisions of Calogero-Moser particles and an adelic Grassmannian”, with an appendix by I. G. Macdonald, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl
[5] W. Van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wisk., 1 (1953), 33–41 | MR | Zbl