Infinite transitivity on the Calogero--Moser space~$\mathcal{C}_2$
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 227-250
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of $\mathbb{C}[ x,y]$ acts in an infinitely-transitive way on the Calogero-Moser space $\mathcal{C}_2$.
Keywords:
infinite transitivity.
Mots-clés : Calogero–Moser space
Mots-clés : Calogero–Moser space
@article{ADM_2021_31_2_a4,
author = {J. Kesten and S. Mathers and Z. Normatov},
title = {Infinite transitivity on the {Calogero--Moser} space~$\mathcal{C}_2$},
journal = {Algebra and discrete mathematics},
pages = {227--250},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/}
}
TY - JOUR
AU - J. Kesten
AU - S. Mathers
AU - Z. Normatov
TI - Infinite transitivity on the Calogero--Moser space~$\mathcal{C}_2$
JO - Algebra and discrete mathematics
PY - 2021
SP - 227
EP - 250
VL - 31
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/
LA - en
ID - ADM_2021_31_2_a4
ER -
J. Kesten; S. Mathers; Z. Normatov. Infinite transitivity on the Calogero--Moser space~$\mathcal{C}_2$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 227-250. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a4/