A new characterization of projective special linear groups $L_3(q)$
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that projective special linear groups $L_3(q)$, where $0$ $(k\in\mathbb{ Z})$ and $q^2+q+1$ is a prime number can be uniquely determined by their order and the number of elements with same order.
Keywords: element orders, the number of elements with same order, prime graph, projective special linear group.
@article{ADM_2021_31_2_a2,
     author = {B. Ebrahimzadeh},
     title = {A new characterization of projective special linear groups $L_3(q)$},
     journal = {Algebra and discrete mathematics},
     pages = {212--218},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/}
}
TY  - JOUR
AU  - B. Ebrahimzadeh
TI  - A new characterization of projective special linear groups $L_3(q)$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 212
EP  - 218
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/
LA  - en
ID  - ADM_2021_31_2_a2
ER  - 
%0 Journal Article
%A B. Ebrahimzadeh
%T A new characterization of projective special linear groups $L_3(q)$
%J Algebra and discrete mathematics
%D 2021
%P 212-218
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/
%G en
%F ADM_2021_31_2_a2
B. Ebrahimzadeh. A new characterization of projective special linear groups $L_3(q)$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/