A new characterization of projective special linear groups $L_3(q)$
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that projective special linear groups $L_3(q)$, where $0$ $(k\in\mathbb{ Z})$ and $q^2+q+1$ is a prime number can be uniquely determined by their order and the number of elements with same order.
Keywords: element orders, the number of elements with same order, prime graph, projective special linear group.
@article{ADM_2021_31_2_a2,
     author = {B. Ebrahimzadeh},
     title = {A new characterization of projective special linear groups $L_3(q)$},
     journal = {Algebra and discrete mathematics},
     pages = {212--218},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/}
}
TY  - JOUR
AU  - B. Ebrahimzadeh
TI  - A new characterization of projective special linear groups $L_3(q)$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 212
EP  - 218
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/
LA  - en
ID  - ADM_2021_31_2_a2
ER  - 
%0 Journal Article
%A B. Ebrahimzadeh
%T A new characterization of projective special linear groups $L_3(q)$
%J Algebra and discrete mathematics
%D 2021
%P 212-218
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/
%G en
%F ADM_2021_31_2_a2
B. Ebrahimzadeh. A new characterization of projective special linear groups $L_3(q)$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/

[1] G. Y. Chen, “About Frobenius groups and $2$-Frobenius groups”, J. Southwest China Normal University, 20:5 (1995), 485–487

[2] B. Ebrahimzadeh, R. Mohammadyari, “A new characterization of symplectic group $C_2 (3^n)$”, Acta et commentationes universitatis tartuensis de mathematica, 23:1 (2019) | DOI | MR

[3] B. Ebrahimzadeh, A. Iranmanesh, H. Parvizi Mosaed, “A new characterization of Ree group $^2G_2 (q)$ by the order of group and number of elements with same order”, Int. J. Group Theory, 6:4 (2017), 1–6 | MR | Zbl

[4] B. Ebrahimzadeh, R. Mohammadyari, “A new characterization of suzuki groups”, Archivum mathematicum (Brono) Tomus, 55 (2019), 17–21 | DOI | MR | Zbl

[5] G. Frobenius, “Verallgemeinerung des sylow'schen satzes”, Berliner sitz, 1895, 981–983

[6] D. Gorenstein, Finite groups, Harper and Row, New York, 1980 | MR

[7] A. Khalili Asboei, A. Iranmanesh, “Characterization of the linear groups $L_2(p)$”, Czechoslovak Mathematical Journal, 64:139 (2014), 459–464 | MR | Zbl

[8] A. Khalili Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, “A new characterization of sporadic simple groups by NSE and order”, J. Algebra Appl., 12:2 (2013), 1250158 | DOI | MR | Zbl

[9] A. S. Kondrat'ev, “Prime graph components of finite simple groups”, Mathematics of the USSR-Sbornik, 67:1 (1990), 235–247 | DOI | MR

[10] V. D. Mazurov, E. I. Khukhro, eds., Unsolved problems in group theory. The Kourovka Notebook, 16 ed., Inst. Mat. Sibirsk. Otdel. Akad., Novosibirsk, 2006 | MR | Zbl

[11] H. Parvizi Mosaed, A. Iranmanesh, A. Tehranian, “Characterization of suzuki group by nse and order of group”, Bull. Korean Math. Soc., 53:3 (2016), 651–656 | DOI | MR | Zbl

[12] C. G. Shao, W. Shi, Q. H. Jiang, “Characterization of simple $K_4$-groups”, Front Math China, 3:3 (2008), 355–370 | DOI | MR | Zbl

[13] W. J. Shi, “A new characterization of the Sporadic simple groups”, Proc. of the 1987 Singapore Conf., Walter de Gruyter, Berlin, 1989, 531–540 | MR

[14] W. J. Shi, “A characterization of $U_3(2^n)$ by their element orders”, J. Southwest-China Normal Univ, 25:4 (2000), 353–360 | MR

[15] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[16] A. V. Zavarnitsine, “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | MR | Zbl