A new characterization of projective special linear groups $L_3(q)$
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that projective special linear groups $L_3(q)$, where $0$ $(k\in\mathbb{ Z})$ and $q^2+q+1$ is a prime number can be uniquely determined by their order and the number of elements with same order.
Keywords:
element orders, the number of elements with same order, prime graph, projective special linear group.
@article{ADM_2021_31_2_a2,
author = {B. Ebrahimzadeh},
title = {A new characterization of projective special linear groups $L_3(q)$},
journal = {Algebra and discrete mathematics},
pages = {212--218},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/}
}
B. Ebrahimzadeh. A new characterization of projective special linear groups $L_3(q)$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 212-218. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a2/