Structure of relatively free trioids
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 152-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Loday and Ronco introduced the notions of a trioid and a trialgebra, and constructed the free trioid of rank $1$ and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free trialgebra and the free trioid, the free commutative trioid, the free $n$-nilpotent trioid, the free left (right) $n$-trinilpotent trioid, and the free rectangular trioid. Some of these results can be applied to constructing relatively free trialgebras.
Keywords: trioid, trialgebra, free trioid, free trialgebra, relatively free trioid, semigroup.
@article{ADM_2021_31_1_a8,
     author = {A. V. Zhuchok},
     title = {Structure of relatively free trioids},
     journal = {Algebra and discrete mathematics},
     pages = {152--166},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a8/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Structure of relatively free trioids
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 152
EP  - 166
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a8/
LA  - en
ID  - ADM_2021_31_1_a8
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Structure of relatively free trioids
%J Algebra and discrete mathematics
%D 2021
%P 152-166
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a8/
%G en
%F ADM_2021_31_1_a8
A. V. Zhuchok. Structure of relatively free trioids. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 152-166. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a8/