Injective stabilization of additive functors,~III. Asymptotic stabilization of the tensor product
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 120-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The injective stabilization of the tensor product is subjected to an iterative procedure that utilizes its bifunctor property. The limit of this procedure, called the asymptotic stabilization of the tensor product, provides a homological counterpart of Buchweitz's asymptotic construction of stable cohomology. The resulting connected sequence of functors is isomorphic to Triulzi's $J$-completion of the Tor functor. A comparison map from Vogel homology to the asymptotic stabilization of the tensor product is constructed and shown to be always epic. The category of finitely presented functors is shown to be complete and cocomplete. As a consequence, the inert injective stabilization of the tensor product with fixed variable a finitely generated module over an artin algebra is shown to be finitely presented. Its defect and consequently all right-derived functors are determined. New notions of asymptotic torsion and cotorsion are introduced and are related to each other.
Keywords: injective stabilization, asymptotic stabilization, asymptotic torsion, asymptotic cotorsion.
@article{ADM_2021_31_1_a7,
     author = {A. Martsinkovsky and J. Russell},
     title = {Injective stabilization of additive {functors,~III.} {Asymptotic} stabilization of the tensor product},
     journal = {Algebra and discrete mathematics},
     pages = {120--151},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a7/}
}
TY  - JOUR
AU  - A. Martsinkovsky
AU  - J. Russell
TI  - Injective stabilization of additive functors,~III. Asymptotic stabilization of the tensor product
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 120
EP  - 151
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a7/
LA  - en
ID  - ADM_2021_31_1_a7
ER  - 
%0 Journal Article
%A A. Martsinkovsky
%A J. Russell
%T Injective stabilization of additive functors,~III. Asymptotic stabilization of the tensor product
%J Algebra and discrete mathematics
%D 2021
%P 120-151
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a7/
%G en
%F ADM_2021_31_1_a7
A. Martsinkovsky; J. Russell. Injective stabilization of additive functors,~III. Asymptotic stabilization of the tensor product. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 120-151. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a7/

[1] J. F. Adams, Infinite loop spaces, Annals of Mathematics Studies, 90, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978 | MR | Zbl

[2] M. Auslander, “Coherent functors”, Proc. Conf. Categorical Algebra (La Jolla Calif., 1965), Springer, New York, 1966, 189–231 | DOI | MR

[3] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Agèbre Commutative derigé par Pierre Samuel, Paris, 1967 | MR | Zbl

[4] M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, Providence, R.I., 1969 | MR | Zbl

[5] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, corrected reprint of the 1982 original, Springer-Verlag, New York, 1994 | MR

[6] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, 1986 ; available at http://hdl.handle.net/1807/16682 | MR

[7] H. Cartan and S. Eilenberg, Homological algebra, with an appendix by David A. Buchsbaum, Princeton Landmarks in Mathematics, reprint of the 1956 original, Princeton University Press, Princeton, NJ, 1999 | MR | Zbl

[8] I. Emmanouil and P. Manousaki, “On the stable homology of modules”, J. Pure Appl. Algebra, 221:9 (2017), 2198–2219 | DOI | MR | Zbl

[9] F. T. Farrell, “An extension of Tate cohomology to a class of infinite groups”, J. Pure Appl. Algebra, 10:2 (1977/78), 153–161 | DOI | MR

[10] R. Gentle, “T.T.F. theories for left and right exact sequences”, J. Pure Appl. Algebra, 75:3 (1991), 237–258 | DOI | MR | Zbl

[11] F. Goichot, “Homologie de Tate-Vogel équivariante”, J. Pure Appl. Algebra, 82:1 (1992), 39–64 | DOI | MR | Zbl

[12] A. Martsinkovsky and J. Russell, “Injective stabilization of additive functors. I. Preliminaries”, J. Algebra, 530 (2019), 429–469 | DOI | MR | Zbl

[13] A. Martsinkovsky and J. Russell, “Injective stabilization of additive functors. II. (Co)torsion and the Auslander–Gruson–Jensen functor”, J. Algebra, 548 (2020), 53–95 | DOI | MR | Zbl

[14] G. Mislin, “Tate cohomology for arbitrary groups via satellites”, Topology Appl., 56:3 (1994), 293–300 | DOI | MR | Zbl

[15] B. E. A. Nucinkis, “Complete cohomology for arbitrary rings using injectives”, J. Pure Appl. Algebra, 131:3 (1998), 297–318 | DOI | MR | Zbl

[16] J. Russell, A functorial approach to linkage and the asymptotic stabilization of the tensor product, Ph.D. thesis (Northeastern University), ProQuest LLC, Ann Arbor, MI, 2013 | MR

[17] M. E. Triulzi, Completion constructions in homological algebra and finiteness conditions, Dr. Sc. Math. thesis (Eidgenoessische Technische Hochschule Zuerich, Switzerland), ProQuest LLC, Ann Arbor, MI, 1999 | MR